Publications

The following publications have been generated by CQN researchers. Note that there is a substantial delay between authoring a paper and seeing it in a peer-reviewed journal. For a more up-to-date view of CQN research, please see our Research Snapshots.

[1] T. Vasantam and D. Towsley, Stability Analysis of a Quantum Network with Max-Weight Scheduling, http://arxiv.org/abs/2106.00831.

[2] M. G. de Andrade, W. Dai, S. Guha, and D. Towsley, A Quantum Walk Control Plane for Distributed Quantum Computing in Quantum Networks, http://arxiv.org/abs/2106.09839.

[3] A. Fischer and D. Towsley, Distributing Graph States Across Quantum Networks, http://arxiv.org/abs/2009.10888.

[4] P. Dhara, A. Patil, H. Krovi, and S. Guha, Sub-Exponential Rate versus Distance with Time Multiplexed Quantum Repeaters, http://arxiv.org/abs/2105.01002.

[5] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Capacity Region of Bipartite and Tripartite Entanglement Switching, SIGMETRICS Perform. EvaI. Rev. 48, 45 (2021).

[6] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Stochastic Analysis of a Quantum Entanglement Distribution Switch, IEEE Transactions on Quantum Engineering 2, 1 (2021).

[7] B. Zhang and Q. Zhuang, Quantum Internet under Random Breakdowns and Intentional Attacks, Quantum Sci. Technol. 6, 045007 (2021).

[8] H. Shi, M.-H. Hsieh, S. Guha, Z. Zhang, and Q. Zhuang, Entanglement-Assisted Capacity Regions and Protocol Designs for Quantum Multiple-Access Channels, Npj Quantum Information 7, 1 (2021).

[9] M. R. Grace, C. N. Gagatsos, and S. Guha, Entanglement-Enhanced Estimation of a Parameter Embedded in Multiple Phases, Phys. Rev. Research 3, 033114 (2021).

[10] G. D. Forney, M. Grassl, and S. Guha, Convolutional and Tail-Biting Quantum Error-Correcting Codes, IEEE Transactions on (2007).

[11] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Stochastic Analysis of a Quantum Entanglement Switch, ACM SIGMETRICS (2019).

[12] H. Shi, M.-H. Hsieh, S. Guha, Z. Zhang, and Q. Zhuang, Entanglement-Assisted Multiple-Access Channels: Capacity Regions and Protocol Designs, Npj Quantum Inf 7, 74 (2021).

[13] S. Guha, Q. Zhuang, and B. Bash, Infinite-Fold Enhancement in Communications Capacity Using Pre-Shared Entanglement, http://arxiv.org/abs/2001.03934.

[14] M. R. Grace, C. N. Gagatsos, and S. Guha, Entanglement Enhanced Estimation of a Parameter Embedded in Multiple Phases, http://arxiv.org/abs/2004.04152.

[15] S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang, Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity, Phys. Rev. Lett. 126, 250501 (2021).

[16] Y. Xia, W. Li, Q. Zhuang, and Z. Zhang, Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network, Phys. Rev. X 11, 021047 (2021).

[17] Z. Zhang and Q. Zhuang, Distributed Quantum Sensing, Quantum Science and Technology.

[1] Lee Y, Bersin E, Dahlberg A, Wehner S, Englund D. A Quantum Router Architecture for High-Fidelity Entanglement Flows in Quantum Networks. arXiv [quant-ph] 2005.01852. 2020. Available: http://arxiv.org/abs/2005.01852

[2] Shi H, Hsieh M-H, Guha S, Zhang Z, Zhuang Q. Entanglement-assisted capacity regions and protocol designs for quantum multiple-access channels. npj Quantum Information. 2021;7: 1–9. doi:10.1038/s41534-021-00412-3

[3] Hao S, Shi H, Li W, Shapiro JH, Zhuang Q, Zhang Z. Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. Phys Rev Lett. 2021;126: 250501. doi:10.1103/PhysRevLett.126.250501

[4] Zhuang Q, Zhang B. Quantum communication capacity transition of complex quantum networks. Phys Rev A. 2021;104: 022608. doi:10.1103/PhysRevA.104.022608

[5] Zhang B, Zhuang Q. Quantum internet under random breakdowns and intentional attacks. Quantum Sci Technol. 2021;6: 045007. doi:10.1088/2058-9565/ac1041

[6] Dai W, Rinaldi A, Towsley D. Entanglement Swapping in Quantum Switches: Protocol Design and Stability Analysis. arXiv [quant-ph] 2110.04116. 2021. Available: http://arxiv.org/abs/2110.04116

[7] Raveendran N, Vasić B. Trapping sets of quantum LDPC codes. Quantum. 2021;5: 562. doi:10.22331/q-2021-10-14-562

[8] Dai W, Towsley D. Entanglement Swapping for Repeater Chains with Finite Memory Sizes. arXiv [quant-ph] 2111.10994. 2021. Available: http://arxiv.org/abs/2111.10994

[9] Shi H, Zhuang Q. Computable limits of optical multiple-access communications. Phys Rev A. 2022;105: 022429. doi:10.1103/PhysRevA.105.022429

[10] Raveendran N, Rengaswamy N, Rozpędek F, Raina A, Jiang L, Vasić B. Finite rate QLDPC-GKP coding scheme that surpasses the CSS Hamming bound. Quantum. 2022;6: 767. doi:10.22331/q-2022-07-20-767

[11] Nain P, Vardoyan G, Guha S, Towsley D. Analysis of a tripartite entanglement distribution switch. Queueing Syst. 2022;101: 291–328. doi:10.1007/s11134-021-09731-w

[12] Sajjad A, Grace MR, Zhuang Q, Guha S. Attaining quantum limited precision of localizing an object in passive imaging. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.022410

[13] Anderson EJD, Guha S, Bash BA. Fundamental limits of bosonic broadcast channels. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9518198/

[14] Gong Z, Gagatsos CN, Guha S. Fundamental Limits of Loss Sensing over Bosonic Channels. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9517810/

[15] Dhara P, Johnson SJ, Gagatsos CN, Kwiat PG. Heralded-Multiplexed High-Efficiency Cascaded Source of Dual-Rail Polarization-Entangled Photon Pairs using Spontaneous Parametric Down Conversion. arXiv preprint arXiv. 2021. Available: https://arxiv.org/abs/2107.14360

[16] Tahmasbi M, Bash BA, Guha S. Signaling for covert quantum sensing. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9517722/

[17] Hao S, Shi H, Gagatsos CN, Mishra M, Bash B, Djordjevic I, et al. Demonstration of Entanglement-Enhanced Covert Sensing. Phys Rev Lett. 2022;129: 010501. doi:10.1103/PhysRevLett.129.010501

[18] Patil A, Pant M, Englund D, Towsley D. Entanglement generation in a quantum network at distance-independent rate. npj Quantum Information. 2022. Available: https://www.nature.com/articles/s41534-022-00536-0

[19] A. Patil, J. I. Jacobson, E. Van Milligen, D. Towsley, and S. Guha, Distance-Independent Entanglement Generation in a Quantum Network Using Space-Time Multiplexed Greenberger–Horne–Zeilinger (GHZ) Measurements, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021), pp. 334–345.

[20] N. Rengaswamy, A. Raina, N. Raveendran, and B. Vasić, Distilling GHZ States Using Stabilizer Codes, http://arxiv.org/abs/2109.06248.

[21] A. Chandra, W. Dai, and D. Towsley, Scheduling Quantum Teleportation with Noisy Memories, http://arxiv.org/abs/2205.06300.

[22] M. Guedes de Andrade, J. Días, J. Navas, S. Guha, I. Montaño, B. Smith, M. Raymer, and D. Towsley, Quantum Network Tomography with Multi-Party State Distribution, arXiv E-Prints arXiv:2206.02920 (2022).

[23] N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, Optimal Entanglement Distribution Using Satellite Based Quantum Networks, http://arxiv.org/abs/2205.12354.

[24] Xia Y, Li W, Zhuang Q, Zhang Z. Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network. Phys Rev X. 2021;11: 021047. doi:10.1103/PhysRevX.11.021047

[25] H. Choi, M.G. Davis, Á.G. Iñesta, D.R. Englund, Scalable Quantum Networks: Congestion-Free Hierarchical Entanglement Routing with Error Correction. arXiv [quant-ph] 2306.09216. 2023. Available: http://arxiv.org/abs/2306.09216

[1] D. Chystas, N. Raveendran, A. Pradhan, B. Vasic Quaternary-binary Message-Passing Decoder for Quantum LDPC Codes, in IEEE Global Communications Conference (Globecomm 2023)

[2] A. Pradhan, N.Raveendran, N. Rengaswamy, X. Xiao, B. Vasic Learning to Decode Quantum Trapping Set in QLDPC Codes, in IEEE International Symposium on Topics in Coding (ISTC 2023)

[3] D.J. Starling, K. Shtyrkova, I. Christen, R. Murphy, L. Li, K.C. Chen, et al., Fully Packaged Multichannel Cryogenic Quantum Memory Module. Phys Rev Appl. 2023;19: 064028. doi:10.1103/PhysRevApplied.19.064028

[4] N. Raveendran, E. Boutillon, B. Vasic Low-Latency Flipping Decoders for Improving Error-Floors Performance of Quantum LDPC Codes, in IEEE International Symposium on Topics in Coding (ISTC 2023)

[5]  Z. Chen, K.K. Leung, S. Wang, L. Tassiulas, K. Chan, D. Towsley, Use coupled LSTM networks to solve constrained optimization problems. IEEE Trans Cogn Commun Netw. 2022; 1–1. doi:10.1109/tccn.2022.3228584

[6] J. Navas, J. Diaz, M. Guedes de Andrade, M.J. Brewer, N. Johnson, M. Raymer, et al. Utilizing Quantum Network Simulators to Develop Methods of Quantum Network Tomography. Bull Am Phys Soc. 2022. Available: https://meetings.aps.org/Meeting/4CS22/Session/F01.47

[7] W. Dai, A. Rinaldi, D. Towsley, The Capacity Region of Entanglement Switching: Stability and Zero Latency. in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) (2022). pp. 389–399. doi:10.1109/QCE53715.2022.00060

[8] A. Chandra, W. Dai, D. Towsley, Scheduling Quantum Teleportation with Noisy Memories. in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE)(2022). pp. 437–446. doi:10.1109/QCE53715.2022.00065

[9] P. Nain, G. Vardoyan, S. Guha, D. Towsley, Analysis of a tripartite entanglement distribution switch. Queueing Syst. 2022. Available: https://link.springer.com/article/10.1007/s11134-021-09731-w

[10]  J. Navas, J. Diaz, M. Guedes de Andrade, M.J. Brewer, N. Johnson, M. Raymer, et al., Exploring the Potential of Quantum Network Simulators to Guide the Development of Quantum Network Tomography. Bull Am Phys Soc. 2023. Available: https://meetings.aps.org/Meeting/MAR23/Session/K67.12

[13] S. Pouryousef, N.K. Panigrahy, D. Towsley, A Quantum Overlay Network for Efficient Entanglement Distribution. arXiv preprint arXiv: 2212.01694. 2022. Available: http://arxiv.org/abs/2212.01694

[14] N.K. Panigrahy, T. Vasantam, D. Towsley, On the Capacity Region of a Quantum Switch with Entanglement Purification. arXiv preprint arXiv 2212.01463. 2022. Available: https://arxiv.org/abs/2212.01463

[15] G. Vardoyan, P. Nain, S. Guha, D. Towsley, On the capacity region of bipartite and tripartite entanglement switching. ACM Transactions on. 2023. Available: https://dl.acm.org/doi/abs/10.1145/3571809

[16] M. Chehimi, B. Simon, W. Saad, A. Klein, D. Towsley, M. Debbah, Matching Game for Optimized Association in Quantum Communication Networks. arXiv [cs.NI] 2305.12682. 2023. Available: http://arxiv.org/abs/2305.12682

[17] M. Chehimi, S. Pouryousef, N.K. Panigrahy, D. Towsley, W. Saad, Scaling Limits of Quantum Repeater Networks. arXiv [cs.NI] 2305.08696. 2023. Available: http://arxiv.org/abs/2305.08696

[18] S. Pouryousef, N.K. Panigrahy, M.D. Purkayastha, S. Mukhopadhyay, G. Grammel, D. Di Mola, et al., Resource Management in Quantum Virtual Private Networks. arXiv [quant-ph] 2305.03231. 2023. Available: http://arxiv.org/abs/2305.03231

[19] M. Guedes de Andrade, J. Diaz, J. Navas, S. Guha, I. Montaño, B. Smith B, et al., Tomography of star-shaped quantum networks with Pauli channels. Bull Am Phys Soc. 2023.

[20] A. Abelem, D. Towsley, G. Vardoyan, Quantum internet: The future of internetworking. arXiv preprint arXiv:230500598. 2023. Available: http://arxiv.org/abs/2305.00598

[21] N. Johnson, J. Navas, M.J. Brewer, M. Guerrero, N. Ceberio, I. Montaño, Using Projective Simulation And Reinforcement Learning For Quantum Circuit Discovery And Optimization in Four Corners Section 2022 Meeting. American Physical Society; (2022). Available: https://meetings.aps.org/Meeting/4CS22/Session/F01.46

[22] M. Brewer, N. Johnson, J. Navas, J. Diaz, I. Montaño, Quantum Game Theory: An Application to Quantum Information Science in Four Corners Section 2022 Meeting. American Physical Society; (2022). Available: https://meetings.aps.org/Meeting/4CS22/Session/F01.45

[23] N. Johnson, J. Navas, M.J. Brewer, M. Guerrero, N. Ceberio, I. Montaño, Learning Protocols for Quantum Entanglement Generation in APS March Meeting 2023. American Physical Society; (2023). Available: https://meetings.aps.org/Meeting/MAR23/Session/AAA05.10

[24] J. Navas, J. Diaz, M. Guedes de Andrade, M.J. Brewer, N. Johnson, M. Raymer, et al., Exploring the Potential of Quantum Network Simulators to Guide the Development of Quantum Network Tomography in APS March Meeting 2023. American Physical Society; (2023). Available: https://meetings.aps.org/Meeting/MAR23/Session/K67.12

[25] Brewer, N. Johnson, J. Navas, J. Diaz, I. Montaño, An Investigation of the Potential of Quantum Game Theory to Control Routing in Quantum Networks in APS March Meeting 2023. American Physical Society; (2023). Available: https://meetings.aps.org/Meeting/MAR23/Session/K67.13

[26] P. Promponas, V. Valls, L. Tassiulas, Full Exploitation of Limited Memory in Quantum Entanglement Switching. arXiv preprint arXiv: 2304.10602. 2023. Available: http://arxiv.org/abs/2304.10602

[27] V. Valls, P. Promponas, L. Tassiulas, On the Capacity of the Quantum Switch with and without Entanglement Decoherence. IEEE Commun Lett. 2023; 1–1. doi:10.1109/LCOMM.2023.3290684

[28] V. Valls, P. Promponas, L. Tassiulas, On the Capacity of the Quantum Switch with and without Entanglement Decoherence. IEEE Commun Lett. 2023; 1–1. doi:10.1109/LCOMM.2023.3290684

[29] Q. Xu, N. Mannucci, A. Seif, A. Kubica, S.T. Flammia, Tailored XZZX codes for biased noise. Physical Review. 2023. Available: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.5

[30] N. Raveendran, N. Rengaswamy, F. Rozpędek, Finite rate QLDPC-GKP coding scheme that surpasses the CSS Hamming bound. Quantum. 2022. Available: https://quantum-journal.org/papers/q-2022-07-20-767/

[31] K.J. Wo, G. Avis, F. Rozpędek, M.F. Mor-Ruiz, G. Pieplow, T. Schröder, et al., Resource-efficient fault-tolerant one-way quantum repeater with code concatenation. arXiv [quant-ph] 2306.07224. 2023. Available: http://arxiv.org/abs/2306.07224

[32] M. Sutula, E. Bersin, Y.Q. Huan, D. Assumpcao, Y-C- Wei, P-J Stas, et al., Telecom quantum networking with a silicon-vacancy center in diamond. APS March Meeting 2023. American Physical Society; 2023. Available: https://meetings.aps.org/Meeting/MAR23/Session/M70.8

[33] N. Raveendran, N. Rengaswamy, Soft syndrome decoding of quantum ldpc codes for joint correction of data and syndrome errors in 2022 IEEE. (2022). Available: https://ieeexplore.ieee.org/abstract/document/9951264/

[34] N. Raveendran, N. Rengaswamy A. Raina, B. Vasić, Entanglement Purification with Quantum LDPC Codes and Iterative Decoding. arXiv [quant-ph]. 2210.14143. 2022. Available: http://arxiv.org/abs/2210.14143

[35] J. Wu, A.J. Brady, Q. Zhuang, Optimal encoding of oscillators into more oscillators. Quantum 7, 1082 (2023). Available: https://quantum-journal.org/papers/q-2023-08-16-1082/

[36] X. Chen, Q. Zhuang, Entanglement-assisted detection of fading targets via correlation-to-coherence conversion.Phys. Rev. A 107, 062405 (2023). Available: 
https://journals-aps-org./pra/abstract/10.1103/PhysRevA.107.062405

[37] H. Shi, Q. Zhuang, Ultimate precision limit of noise sensing and dark matter search. npj Quantum Inf. 9, 27 (2023). Available: https://www.nature.com/articles/s41534-023-00693-w#Ack1

[38] A. Cox, Q. Zhuang, C. Gagatsos, B. Bash, S. Guha, Transceiver designs to attain the entanglement assisted communications capacity. arXiv [quant-ph]. /2208.07979. 2022. Available: http://arxiv.org/abs/2208.07979

[39] H. Shi, B. Zhang, Q. Zhuang, Fulfilling entanglement’s benefit via converting correlation to coherence. Phys. Rev. Applied 18, 064016 (2022). Available: http://arxiv.org/abs/2207.06609

[40] B-H Wu, S. Guha, Q. Zhuang, Entanglement-assisted multi-aperture pulse-compression radar for angle resolving detection. arXiv [quant-ph]. 2207.10881. 2022. Available: http://arxiv.org/abs/2207.10881

[41] A. Cox, Q. Zhuang, C.N. Gagatsos, B. Bash, S. Guha, Transceiver Designs Approaching the Entanglement-Assisted Communication Capacity. Phys Rev Appl. 2023;19: 064015. doi:10.1103/PhysRevApplied.19.064015

[42] M.G. De Andrade, J. Diaz, J. Navas, S. Guha, I. Montaño, B. Smith, et al. Quantum Network Tomography with Multi-party State Distribution in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). 2022. pp. 400–409. doi:10.1109/QCE53715.2022.00061

[43] J. Sidhu, M. Bullock, S. Guha, C. Lupo, Linear optics and photodetection achieve near-optimal unambiguous coherent state discrimination. Bull Am Phys Soc. 2023. Available: https://meetings.aps.org/Meeting/MAR23/Session/A67.4

[44] M. Guedes de Andrade, D. Towsley, W. Dai, S. Guha, Optimal Control Policies for Distributed Quantum Computing with Quantum Walks. Bull Am Phys Soc. 2023. Available: https://meetings.aps.org/Meeting/MAR23/Session/K67.3

[45] C. Cui, W. Horrocks, S. Hao, S. Guha, N. Peyghambarian, Q. Zhuang, et al., Quantum receiver enhanced by adaptive learning. Light Sci Appl. 2022;11: 344. doi:10.1038/s41377-022-01039-5

[46] A. Patil, Y. Jacobson, D. Towsley, S. Guha, Measurement-Based Quantum Computing as a Tangram Puzzle. 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). 2022. pp. 803–806. doi:10.1109/QCE53715.2022.00124

[47] P. Nain, G. Vardoyan, S. Guha, D. Towsley, On the Analysis of a Multipartite Entanglement Distribution Switch. arXiv [quant-ph] 2212.01784. 2022. Available: http://arxiv.org/abs/2212.0178

[48] C. Delaney, K.P. Seshadreesan, I. MacCormack, A. Galda, Demonstration of a quantum advantage by a joint detection receiver for optical communication using quantum belief propagation on a trapped-ion device. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.032613

[49] K. Goodenough, S. de Bone, V.L. Addala, Near-term to distillation protocols using graph codes. arXiv preprint arXiv. 2023 2303.11465. Available: https://arxiv.org/abs/2303.11465

[1] Patil A, Guha S. An improved design for all-photonic quantum repeaters. 2405.11768 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2405.11768

[2] Patil A, Pacenti M, Vasić B, Guha S, Rengaswamy N. Entanglement routing using quantum error correction for distillation. 2405.00849 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2405.00849

[3] De Andrade MG, Navas J, Guha S, Montaño I, Raymer M, Smith B, et al. Quantum Network Tomography. IEEE Netw. 2024;abs/2405.11396: 1–1. doi:10.1109/mnet.2024.3403805

[4] Tillman I, Vasantam T, Towsley D, Seshadreesan KP. Calculating the capacity region of a quantum switch. 2404.18818 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2404.18818

[5] de Andrade MG, Van Milligen EA, Bacciottini L, Chandra A, Pouryousef S, Panigrahy NK, et al. On the analysis of quantum repeater chains with sequential swaps. arXiv e-prints. 2024; arXiv: 2405.18252. Available: https://arxiv.org/abs/2405.18252

[6] De Andrade MG, Navas J, Guha S, Montaño I, Raymer M, Smith B, et al. Quantum Network Tomography. IEEE Netw. 2024; 1–1. doi:10.1109/mnet.2024.3403805

[7] Chandra A, Rozpedek F, Towsley D. Role of syndrome information in scheduling teleportation. Bulletin of the American Physical Society. 2024 [cited 19 Jan 2024]. Available: https://meetings.aps.org/Meeting/MAR24/Session/N53.13

[8] Goodenough K, Coopmans T, Towsley D. On noise in swap ASAP repeater chains: exact analytics, distributions and tight approximations. 2404.07146 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2404.07146

[9] Promponas P, Valls V, Guha S, Tassiulas L. Maximizing Entanglement Rates via Efficient Memory Management in Flexible Quantum Switches. IEEE J Sel Areas Commun. 2024;42: 1749–1762. doi:10.1109/JSAC.2024.3380097

[10] Van Milligen EA, Gagatsos CN, Kaur E, Towsley D, Guha S. Utilizing probabilistic entanglement between sensors in quantum networks. 2407.15652 arXiv [quant-ph]. 2024. Available: http://arxiv.org/abs/2407.15652

[11] Guedes de Andrade M, Navas J, Montaño I, Towsley D. On the characterization of quantum flip stars with Quantum Network Tomography. QCE. 2023;01: 1260–1270. doi:10.1109/QCE57702.2023.00142

[12] Kaur E, Guha S. Distribution of entanglement in two-dimensional square grid network. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE; 2023. pp. 1154–1164. doi:10.1109/QCE57702.2023.00130

[13] Van Milligen EA, Jacobson E, Patil A, Vardoyan G, Towsley D, Guha S. Entanglement Routing over Networks with Time Multiplexed Repeaters. 2308.15028 arXiv preprint arXiv. 2023. Available: https://arxiv.org/abs/2308.15028  

[14] Vardoyan G, van Milligen E, Guha S, Wehner S, Towsley D. On the Bipartite Entanglement Capacity of Quantum Networks. 2307.04477 arXiv preprint arXiv. 2023. Available: https://arxiv.org/abs/2307.04477  

[15] Bali R, Tittelbaugh A, Jenkins SL, Agrawal A, Horgan J, Ruffini M, et al. Routing and spectrum allocation in broadband degenerate EPR-pair distribution. ICC 2024 - IEEE International Conference on Communications. IEEE; 2024. pp. 4954–4960. doi:10.1109/icc51166.2024.1062245

[16] Bali R, Tittelbaugh A, Jenkins SL, Agrawal A, Horgan J, Ruffini M, et al. Routing and spectrum allocation in broadband degenerate EPR-pair distribution. ArXiv. 2023;abs/2311.14613. doi:10.48550/arXiv.2311.14613

[17] Goodenough K, Sajjad A, Kaur E, Guha S, Towsley D. Bipartite entanglement of noisy stabilizer states through the lens of stabilizer codes. 2406.02427 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2406.02427

[18] Pouryousef S, Shapourian H, Towsley D. Analysis of asynchronous protocols for entanglement distribution in quantum networks. 2405.02406 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2405.02406

[19] Williams A, Panigrahy NK, McGregor A, Towsley D. Scalable scheduling policies for quantum satellite networks. 2405.09464 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2405.09464

[20] Chehimi M, Goodenough K, Saad W, Towsley D, Zhou TX. Entanglement distribution delay optimization in quantum networks with distillation. 2405.09034 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2405.09034\

[21] Sajjad A, Kaur E, Goodenough K, Towsley D, Guha S. Lower bounds on bipartite entanglement in noisy graph states. 2404.09014 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2404.09014

[22] Chehimi M, Elhattab M, Saad W, Vardoyan G, Panigrahy NK, Assi C, et al. Reconfigurable Intelligent Surface (RIS)-Assisted Entanglement Distribution in FSO Quantum Networks. 2401.10823 arXiv [cs.NI]. 2024. Available: https://arxiv.org/abs/2401.10823

[23] Wang X, Janice Chen Y-Z, de Andrade MG, Hajiesmaili M, Lui JCS, Towsley D. Quantum best arm identification. Perform Eval Rev. 2023;51: 72–74. doi:10.1145/3626570.3626596

[24] Chehimi M, Chen SY-C, Saad W, Towsley D, Debbah M. Foundations of Quantum Federated Learning Over Classical and Quantum Networks. IEEE Netw. 2023;PP: 1–1. doi:10.1109/MNET.2023.3327365

[25] Goodenough K, Coopmans T, Towsley D. On noise in swap ASAP repeater chains: exact analytics, distributions and tight approximations. APS March Meeting 2024. American Physical Society; 2024. Available: https://meetings.aps.org/Meeting/MAR24/Session/N53.11

[26] Mobayenjarihani M, Vardoyan G, Towsley D. Optimistic Entanglement Purification in Quantum Networks. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE; 2023. pp. 1143–1153. doi:10.1109/QCE57702.2023.00129

[27] Panigrahy NK, De Andrade MG, Pouryousef S, Towsley D, Tassiulas L. Scalable Multipartite Entanglement Distribution in Quantum Networks. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE; 2023. pp. 391–392. doi:10.1109/QCE57702.2023.10297

[28] Sen A, Goodenough K, Towsley D. Multipartite Entanglement in Quantum Networks Using Subgraph Complementations. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE; 2023. pp. 252–253. doi:10.1109/QCE57702.2023.10229

[29]Guedes de Andrade M, Panigrahy NK, Dai W, Guha S, Towsley D. Universal Quantum Walk Control Plane for Quantum Networks. arXiv e-prints. 2023; arXiv:2307.06492. doi:10.48550/arXiv.2307.06492

[30] Shi H, Zhuang Q. Overcoming the fundamental limit of quantum transduction via intraband entanglement. 2404.09441 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2404.09441

[31] Liao P, Zhang B, Zhuang Q. Quantum-enhanced learning with a controllable bosonic variational sensor network. Quantum Sci Technol. 2024. doi:10.1088/2058-9565/ad752d

[32] Zhao X, Zhang Z, Zhuang Q. Quantum illumination networks. In: Hedden AS, Mazzaro GJ, editors. Radar Sensor Technology XXVIII. SPIE; 2024. pp. 174–176. doi:10.1117/12.3014070

[33] Brady AJ, Wu J, Zhuang Q. Safeguarding oscillators and qudits with distributed two-mode squeezing. 2402.05888arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2402.05888

[34] Wu J, Fan L, Zhuang Q. Teleportation-based microwave-to-optical quantum transduction: The limited role of single-mode squeezing. Phys Rev A (Coll Park). 2024;109: 022619. doi:10.1103/physreva.109.022619

[35] H Shi, Q Zhuang: Ultimate precision limit of noise sensing and dark matter search, npj Quantum Information 9, 27, 2023. http://dx.doi.org/10.1038/s41534-023-00693-w

[36] H Shi, Z Chen, SE Fraser, M Yu, Z Zhang, Q Zhuang: Entanglement-enhanced dual-comb spectroscopy, npj Quantum Information 9 (91), 2023. http://dx.doi.org/10.1038/s41534-023-00758-w

[37] Brady AJ, Chen X, Xia Y, Manley J. Entanglement-enhanced optomechanical sensor array with application to dark matter searches. Communications. 2023. Available: https://www.nature.com/articles/s42005-023-01357-z

[38] Guinn C, Stein S, Tureci E, Avis G, Liu C, Krastanov S, et al. Co-Designed Superconducting Architecture for Lattice Surgery of Surface Codes with Quantum Interface Routing Card. 2312.01246 arXiv [quant-ph]. 2023. Available: http://arxiv.org/abs/2312.01246

[39] Addala VL, Ge S, Krastanov S. Faster-than-Clifford Simulations of Entanglement Purification Circuits and Their Full-stack Optimization. 2307.06354 arXiv [quant-ph]. 2023. Available: http://arxiv.org/abs/2307.06354

[40] Liao P, Zhuang Q. Optimal noisy entanglement testing for ranging and communication. 2312.15047 arXiv [quant-ph]. 2023. Available: http://arxiv.org/abs/2312.15047

[41] A Patil, S Guha. Tree Cluster State Generation using Percolation, Quantum 2.0, QTh4A. 3, 2023. http://dx.doi.org/10.1364/quantum.2023.qth4a.3

[42] Patil A, Guha S. Clifford Manipulations of Stabilizer States: A graphical rule book for Clifford unitaries and measurements on cluster states, and application to photonic quantum computing. 2312.02377 arXiv [quant-ph]. 2023. Available: http://arxiv.org/abs/2312.02377

[43] Patil A, Pacenti M, Vasić B, Guha S, Rengaswamy N. Entanglement routing using quantum error correction for distillation. 2405.00849 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2405.00849

[44] Rengaswamy N, Raina A, Raveendran N, Vasić B. GHZ Distillation using Quantum LDPC Codes. 2023 12th International Symposium on Topics in Coding (ISTC). IEEE; 2023. pp. 1–5. doi:10.1109/ISTC57237.2023.10273456

[45] Chytas D, Raveendran N, Vasić B. Collective bit flipping-based decoding of quantum LDPC codes. 2406.17070 arXiv [cs.IT]. 2024. Available: http://arxiv.org/abs/2406.17070

[46] Novak O, Rengaswamy N. GNarsil: Splitting stabilizers into gauges. ArXiv. 2024;abs/2404.18302. doi:10.48550/arXiv.2404.18302 (Associated)

[47] Nadkarni PJ, Rengaswamy N, Vasić B. Tutorial on quantum error correction for 2024 Quantum Information Knowledge (QuIK) workshop. 2407.12737 arXiv [quant-ph]. 2024. Available: http://arxiv.org/abs/2407.12737 (Associated; Outreach)

[48] Raveendran N, Boutillon E, Vasić B. Turbo-XZ Algorithm: Low-Latency Decoders for Quantum LDPC Codes. 2023 12th International Symposium on Topics in Coding (ISTC). IEEE; 2023. pp. 1–5. doi:10.1109/ISTC57237.2023.10273490 (Associated)

[49] Pradhan AK, Raveendran N, Rengaswamy N, Xiao X, Vasić B. Learning to Decode Trapping Sets in QLDPC Codes. 2023 12th International Symposium on Topics in Coding (ISTC). IEEE; 2023. pp. 1–5. doi:10.1109/ISTC57237.2023.10273526 (Associated)

[50] M. Pacenti and B. Vasić, “Quantum Margulis Codes,” in Proc. of 60th Annual Allerton Conference on Communication, Control, and Computing, Sept. 25-27 2024, pp. 1

[51] M. Pacenti, M. F. Flanagan, D. Chytas, and B. Vasić, “Progressive-Proximity Bit-Flipping for Decoding Surface Codes,” IEEE Transactions on Communications (accepted), pp. 1–1, 2024

[52] Anderson EJD, Eyre CK, Dailey IM, Bash BA. Covert Quantum Communication Over Optical Channels. arXiv [quant-ph]. 2024. Available: http://arxiv.org/abs/2401.06764  

[53] Dhara P, Jiang L, Guha S. Entangling quantum memories at channel capacity. 2406.04272 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2406.04272

[54] Dhara P, Jiang L, Guha S. Interfacing Gottesman-Kitaev-Preskill Qubits to Quantum Memories. 2406.04275 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2406.04275

[55] Gabriel Richardson J, Dhara P, Chahine YK, Guha S. Optimized Entanglement Distribution Among Quantum Memories. 2024. Available: https://ntrs.nasa.gov/api/citations/20240002375/downloads/SPDCvZALM_Gre…

[56] Chytas D, Pacenti M, Raveendran N, Flanagan MF, Vasić B. Enhanced Message-Passing Decoding of Degenerate Quantum Codes Utilizing Trapping Set Dynamics. IEEE Commun Lett. 2024;PP: 1-1. http://dx.doi.org/10.1109/lcomm.2024.3356312

[57] Li B, Goodenough K, Rozpędek F, Jiang L. Generalized quantum repeater graph states. 2407.01429 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2407.01429

[58] Raymer MG, Embleton C, Shapiro JH. The Duan-Kimble cavity-atom quantum memory loading scheme revisited. 2406.12201 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2406.12201

[59] Shapiro JH, Raymer MG, Embleton C, Wong FNC, Smith BJ. Entanglement source and quantum memory analysis for zero added-loss multiplexing. 2406.13572 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2406.13572

[60] Liu J, Jiang L. Quantum data center: Perspectives. IEEE Network. 2024. Available: https://ieeexplore.ieee.org/abstract/document/10521772

[61] He K, Yuan M, Wong Y, Chakram S, Seif A, Jiang L, et al. Efficient multimode Wigner tomography. Nature communications. 2024;15: 4138. Available: https://www.nature.com/articles/s41467-024-48573-x

[62] Chen S, Oh C, Zhou S, Huang H-Y, Jiang L. Tight bounds on Pauli channel learning without entanglement. Phys Rev Lett. 2024;132: 180805. doi:10.1103/PhysRevLett.132.180805

[63] Oh C, Liu M, Alexeev Y, Fefferman B, Jiang L. Classical algorithm for simulating experimental Gaussian boson sampling. Nature Physics. 2024; 1–8. Available: https://www.nature.com/articles/s41567-024-02535-8

[64] Nathan F, O’Brien L, Noh K, Matheny MH, Grimsmo AL, Jiang L, et al. Self-correcting GKP qubit and gates in a driven-dissipative circuit. 2405.05671 arXiv [cond-mat.mes-hall]. 2024. Available: https://arxiv.org/abs/2405.05671 

[65] Zhang Z, Chen S, Liu Y, Jiang L. A generalized cycle benchmarking algorithm for characterizing mid-circuit measurements. 2406.02669arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2406.02669 

[66] Zheng G, He W, Lee G, Jiang L. Near-optimal performance of quantum error correction codes. Phys Rev Lett. 2024;132: 250602. doi:10.1103/PhysRevLett.132.250602

[67] Oh C, Fefferman B, Jiang L, Quesada N. Quantum-inspired classical algorithm for graph problems by Gaussian boson sampling. PRX quantum. 2024;5: 020341. doi:10.1103/prxquantum.5.020341

[68] Liu J, Lin Z, Jiang L. Laziness, barren plateau, and noises in machine learning. Mach Learn Sci Technol. 2024;5: 015058. doi:10.1088/2632-2153/ad35a3

[69] Lee S-U, Oh C, Wong Y, Chen S, Jiang L. Universal spreading of conditional mutual information in noisy random circuits. 2402.18548 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2402.18548

[70] Huang Y, Salces-Carcoba F, Adhikari RX, Safavi-Naeini AH, Jiang L. Vacuum Beam Guide for Large Scale Quantum Networks. Phys Rev Lett. 2024;133: 020801. doi:10.1103/PhysRevLett.133.020801

[71] Wang Z, Zhang M, Wong Y, Zhong C, Jiang L. Optimized Protocols for Duplex Quantum Transduction. Phys Rev Lett. 2023;131: 220802. doi:10.1103/PhysRevLett.131.220802.

[72] Wo KJ, Avis G, Rozpędek F, Mor-Ruiz MF, Pieplow G, Schröder T, et al. Resource-efficient fault-tolerant one-way quantum repeater with code concatenation. npj Quantum Inf. 2023;9: 123. doi:10.1038/s41534-023-00792-8

[73] Zhao Y, Renaud D, Farfurnik D, Jiang Y, Dutta S, Sinclair N, et al. Cavity-enhanced narrowband spectral filters using rare-earth ions doped in thin-film lithium niobate. 2401.09655 arXiv [physics.optics]. 2024. Available: http://arxiv.org/abs/2401.09655

[74] Oh C, Lim Y, Wong Y, Fefferman B, Jiang L. Quantum-inspired classical algorithms for molecular vibronic spectra. Nat Phys. 2024. Available: https://www.nature.com/articles/s41567-023-02308-9

[75] Wang Z, Jiang L. Passive environment-assisted quantum transduction with GKP states. 2401.1678 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2401.16781

[76] Diringer AA, Blumenthal E, Grinberg A, Jiang L, Hacohen-Gourgy S. Conditional-not displacement: Fast multioscillator control with a single qubit. Phys Rev X. 2024;14: 011055. doi:10.1103/physrevx.14.011055

[77] Hu J-M, Zhuang S, Zhong C, Jiang L, Zhang X. Dynamical phase-field model of cavity electromagnonic systems. 2023. Available: https://www.researchsquare.com/article/rs-3603404/v1  

[78] Liu M, Oh C, Liu J, Jiang L, Alexeev Y. Simulating lossy Gaussian boson sampling with matrix-product operators. Phys Rev A (Coll Park). 2023;108: 052604. doi:10.1103/physreva.108.052604

[79] Li Z, Zheng H, Wang Y, Jiang L, Liu Z-W, Liu J. SU(d)-symmetric random unitaries: Quantum scrambling, error correction, and machine learning. 2309.16556 arXiv [quant-ph]. 2023. Available: https://arxiv.org/abs/2309.16556  

[80] Liu J, Hann CT, Jiang L. Data centers with quantum random access memory and quantum networks. Phys Rev A (Coll Park). 2023;108: 032610. doi:10.1103/physreva.108.032610

[81] Li Z, Zheng H, Liu J, Jiang L, Liu Z-W. Designs from local random quantum circuits with SU(d) symmetry. 2309.08155 arXiv [quant-ph]. 2023. Available: https://arxiv.org/abs/2309.08155  

[82] Oh C, Jiang L, Fefferman B. Spoofing cross-entropy measure in boson sampling. Phys Rev Lett. 2023;131: 010401. doi:10.1103/PhysRevLett.131.010401

[83] Q Xu, G Zheng, YX Wang, P Zoller, AA Clerk, L Jiang: Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat

[85]  qubits, npj Quantum Information 9 (1), 78, 2023. http://dx.doi.org/10.1038/s41534-023-00746-0

[86] S Chen, Y Liu, M Otten, A Seif, B Fefferman, L Jiang: The learnability of Pauli noise, Nature Communications 14 (1), 52, 2023. http://dx.doi.org/10.1038/s41467-022-35759-4

[87] J Eisert, J Liu, M Liu, JP Liu, Z Ye, Y Alexeev, L Jiang: Towards provably efficient quantum algorithms for large-scale machine learning models. http://dx.doi.org/10.1038/s41467-023-43957-x

[88] Raveendran N, Valls J, Pradhan AK, Rengaswamy N, Garcia-Herrero F, Vasić B. Soft syndrome iterative decoding of quantum LDPC codes and hardware architectures. EPJ Quantum Technol. 2023;10. doi:10.1140/epjqt/s40507-023-00201-1

[89] Xu Q, Pablo Bonilla Ataides J, Pattison CA, Raveendran N, Bluvstein D, Wurtz J, et al. Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays. Nat Phys. 2023; 1–7. doi:10.1038/s41567-024-02479-z

[90] Oh C, Chen S, Wong Y, Zhou S, Huang H-Y, Nielsen JAH, et al. Entanglement-enabled advantage for learning a bosonic random displacement channel. 2402.18809 arXiv [quant-ph]. 2024. Available: https://arxiv.org/abs/2402.18809 

[91] Meesala S, Wood S, Lake D, Chiappina P, Zhong C, Beyer AD, et al. Non-classical microwave–optical photon pair generation with a chip-scale transducer. Nat Phys. 2023;20: 871–877. doi:10.1038/s41567-024-02409-z

[92] Meesala S, Lake D, Wood S, Chiappina P, Zhong C, Beyer AD, et al. Quantum entanglement between optical and microwave photonic qubits. 2312.13559 arXiv [quant-ph]. 2023. Available: https://arxiv.org/abs/2312.13559  

[93] Golter DA, Clark G, El Dandachi T, Krastanov S, Leenheer AJ, Wan NH, et al. Selective and Scalable Control of Spin Quantum Memories in a Photonic Circuit. Nano Lett. 2023;23: 7852–7858. doi:10.1021/acs.nanolett.3c01511

[94] Clark G, Raniwala H, Koppa M, Chen K, Leenheer A, Zimmermann M, et al. Nanoelectromechanical Control of Spin-Photon Interfaces in a Hybrid Quantum System on Chip. Nano Lett. 2024. doi:10.1021/acs.nanolett.3c04301

[95] P Dhara, D Englund, S Guha: Entangling quantum memories via heralded photonic Bell measurement, Physical Review Research 5 (3), 033149, 2023. http://dx.doi.org/10.1364/quantum.2023.qm4c.7  

[96] L Bugalho, EZ Cruzeiro, KC Chen, W Dai, D Englund, Y Omar: Resource-efficient simulation of noisy quantum circuits and application to network-enabled QRAM optimization, npj Quantum Information 9 (1), 105, 2023. http://dx.doi.org/10.1038/s41534-023-00773-x

[97] Zhang B, Liu J, Wu X-C, Jiang L, Zhuang Q. Dynamical phase transition in quantum neural networks with large depth. 2311.18144 arXiv [quant-ph]. 2023. Available: http://arxiv.org/abs/2311.18144

[98] P Dhara, S Guha: Phonon-induced decoherence in color-center qubits, Physical Review Research 6 (1), 013055, 2024. http://dx.doi.org/10.1103/physrevresearch.6.013055

[99] Cui C, Postlewaite J, Saif B, Fan L, Guha S. Demonstration of superadditive communication and nonlocality without entanglement with the Green Machine temporal mode sorter. Bull Am Phys Soc. 2024. Available: https://meetings.aps.org/Meeting/MAR24/Session/A53.5

[100] Ozer I, Grace M, Guha S. Super-resolution imaging without prior knowledge using spatial modes sorting. Bull Am Phys Soc. 2024. Available: https://meetings.aps.org/Meeting/MAR24/Session/W52.8

[101] Cui C, Postlewaite J, Saif BN, Fan L, Guha S. Superadditive communications with the green machine: a practical demonstration of nonlocality without entanglement. 2310.05889 arXiv preprint arXiv. 2023. Available: https://arxiv.org/abs/2310.05889

[102] Awerkamp PA, Hill D, Fish D, Wright K, Bashaw B, Nordin GP, et al. Self-Sustaining Water Microdroplet Resonators Using 3D Printed Microfluidics. Frontiers in Optics. Optica Publishing Group; 2023. pp. FTh1C-2. Available: https://www.mdpi.com/2072-666X/15/4/423

[103] Conall J. Campbell, Adam G. Hawkins, Giorgio Zicari, Mauro Paternostro, and Hannah McAleese. Entanglement distribution through separable states via a zero-added-loss photon multiplexing inspired protocol. American Physical Society. Phys. Rev. Research 6, 033317; Published 19 September 2024. doi:10.1103/PhysRevResearch.6.033317  

[104] Raymer, Michael G., and Polakos, Paul. States, Modes, Fields, and Photons in Quantum Optics.  6 ACTA PHYSICA POLONICA A, Vol. 143. 2023. Available: http://przyrbwn.icm.edu.pl/APP/PDF/143/app143z6p04.pdf

[105] Raymer MG, Banaszek K. Time-frequency optical filtering: efficiency vs. temporal-mode discrimination in incoherent and coherent implementations. Opt Express. 2020;28: 32819–32836. doi:10.1364/OE.405618

[106] Charaev I, Batson E, Cherednichenko S, Reidy K, Drakinskiy V, Yu Y, et al. Single-photon detection using large-scale high-temperature MgB2 sensors at 20 K. Nat Commun. 2023;15: 3973. Available: http://dx.doi.org/10.1038/s41467-024-47353-x

[107] Colangelo M, Zhu D, Shao L, Holzgrafe J, Batson EK, Desiatov B, et al. Molybdenum silicide superconducting nanowire single-photon detectors on lithium niobate waveguides. ACS Photonics. 2024;11: 356–361. doi:10.1021/acsphotonics.3c01628

[108] Batson E, Incalza F, Castellani M, Colangelo M, Charaev I, Schilling A, Cherednichenko S, Berggren K K. Effects of Helium Ion Exposure on the Single-Photon Sensitivity of MgB2 and NbN Detectors. IEEE Transactions on Applied Superconductivity vol. 34 no. 7, pp. 1-6, Oct. 2024. doi: 10.1109/TASC.2024.3425158.

[109] Castellani, M., Medeiros, O., Foster, R. A., Buzzi, A., Colangelo, M., Bienfang, et al. Nanocryotron ripple counter integrated with a superconducting nanowire single-photon detector for megapixel arrays. Physical Review Applied, 22(2), 024020 (2024). doi: https://doi.org/10.1103/PhysRevApplied.22.024020

[110] Castellani M, Medeiros O, Buzzi A, Foster RA, Colangelo M, Berggren KK. A superconducting full-wave bridge rectifier. 2406.12175 arXiv [physics.app-ph]. 2024. Available: https://arxiv.org/abs/2406.12175

[111] Berggren KK. Integrated electronics for superconducting-nanowire single-photon detector readout. In: Hemmer PR, Migdall AL, editors. Quantum Computing, Communication, and Simulation IV. SPIE; 2024. p. PC1291104. doi:10.1117/12.3009634

[112] Mauskopf P, Angel R, Atwater H, Bazzani E, Berggren K, Blase P, et al. Technology development for a low-mass solar system and interstellar communications system. In: Hemmati H, Robinson BS, editors. Free-Space Laser Communications XXXVI. SPIE; 2024. pp. 526–544. doi:10.1117/12.3023043

[113] Chou A, Irwin K, Maruyama RH, Baker OK, Bartram C, Berggren KK, et al. Quantum Sensors for High Energy Physics. 2311.01930 arXiv [hep-ex]. 2023. Available: https://arxiv.org/abs/2311.01930

[114] Flores HR, Layton SR, Englund D, Camacho RM. Alignment-Free Coupling to Arrays of Diamond Microdisk Cavities for Scalable Spin-Photon Interfaces. arXiv [quant-ph]. 2023. Available: http://arxiv.org/abs/2312.05638

[115] Awerkamp PA, Hill D, Fish D, Wright K, Bashaw B, Nordin GP, et al. Self-Sustaining Water Microdroplet Resonators Using 3D-Printed Microfluidics. Micromachines. 2024;15: 423. Available: https://www.mdpi.com/2072-666X/15/4/423

[116] Flores HR, Layton SR, Englund D, Camacho RM. Alignment-free coupling to arrays of diamond microdisk cavities with fabrication tolerant spin-photon interfaces. Opt Express. 2024;32: 12054–12064. doi:10.1364/OE.515620

[117] Huan YQ, Knaut C, Suleymanzade A, Wei Y-C, Assumpcao D, Stas P-J, et al. Entanglement of Nanophotonic Quantum Memory Nodes in a Metropolitan Telecom Network. Bulletin of the American Physical Society. 2024. Available: https://meetings.aps.org/Meeting/DAMOP24/Session/Y10.4

[118] Knaut CM, Suleymanzade A, Wei Y-C, Assumpcao DR, Stas P-J, Huan YQ, et al. Entanglement of nanophotonic quantum memory nodes in a telecom network. Nature. 2024;629: 573–578. doi:10.1038/s41586-024-07252-z

[119] Powell K, Li X, Assumpcao D, Magalhães L, Sinclair N, Lončar M. Stable electro-optic modulators using thin-film lithium tantalate. 2405.05169 arXiv [physics.optics]. 2024. Available: https://arxiv.org/abs/2405.05169  

[120] Assumpcao D, Renaud D, Baradari A, Zeng B, De-Eknamkul C, Xin CJ, et al. A thin film lithium niobate near-infrared platform for multiplexing quantum nodes. 2405.03912 arXiv [physics.optics]. 2024. Available: https://arxiv.org/abs/2405.03912

[121] Xin CJ, Lu S, Yang J, Shams-Ansari A, Achuthan N, Sinclair N, et al. Towards wavelength-accurate quasi-phasematched frequency conversion in thin-film lithium niobate. 2024; STu3E. 2. Available: https://opg.optica.org/abstract.cfm?uri=CLEO_SI-2024-STu3E.2

[122] Xin CJ, Lu S, Yang J, Shams-Ansari A, Desiatov B, Magalhães LS, et al. Wavelength-accurate and wafer-scale process for nonlinear frequency mixers in thin-film lithium niobate. Research Square. 2024. doi:10.21203/rs.3.rs-4289238/v1

[123] Hu Y, Zhu D, Lu S, Zhu X, Song Y, Renaud D, et al. Integrated electro-optics on thin-film lithium niobate. 2404.06398 arXiv [physics.optics]. 2024. Available: https://arxiv.org/abs/2404.06398  

[124] Ding SW, Pingault B, Shao L, Sinclair N, Machielse B, Chia C, et al. Integrated phononic waveguides in diamond. Phys Rev Appl. 2024;21: 014034. doi:10.1103/PhysRevApplied.21.014034

[125] Assumpcao DR, Jin C, Sutula M, Ding SW, Pham P, Knaut CM, et al. Deterministic creation of strained color centers in nanostructures via high-stress thin films. Physics Letters A, 2023. Available: https://pubs.aip.org/aip/apl/article/123/24/244001/2928883

[126] Zhu X, Hu Y, Lu S, Warner HK, Li X, Song Y, et al. Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate. Photonics Res. 2024;12: A63. doi:10.1364/prj.521172  

[127] Ding SW, Haas M, Guo X, Kuruma K, Jin C, Li Z, et al. High-Q cavity interface for color centers in thin film diamond. Nat Commun. 2024;15: 6358. doi:10.1038/s41467-024-50667-5

[128] Chen KC, Christen I, Raniwala H, Colangelo M, De Santis L, Shtyrkova K, et al. A scalable cavity-based spin-photon interface in a photonic integrated circuit. Optica Quantum. 2024;2: 124–132. Available: https://opg.optica.org/opticaq/fulltext.cfm?uri=opticaq-2-2-124&id=5490…

[129] Li L, Santis LD, Harris IBW, Chen KC, Gao Y, Christen I, et al. Heterogeneous integration of spin-photon interfaces with a CMOS platform. Nature. 2024; 1–7. doi:10.1038/s41586-024-07371-7

[130] Li L, Anand P, He K, Englund D. Dynamic inhomogeneous quantum resource scheduling with reinforcement learning. 2405.16380 arXiv [cs.LG]. 2024. Available: https://arxiv.org/abs/2405.16380

[131] Beukers HKC, Pasini M, Choi H, Englund D, Hanson R, Borregaard J. Remote-entanglement protocols for stationary qubits with photonic interfaces. PRX quantum. 2024;5: 010202. doi:10.1103/prxquantum.5.010202

[132] Beukers HKC, Pasini M, Choi H, Englund D, Hanson R, Borregaard J. Tutorial: Remote entanglement protocols for stationary qubits with photonic interfaces. 2310.19878 arXiv preprint arXiv. 2023. Available: https://arxiv.org/abs/2310.19878

[133] Almutlaq J, Kelley KP, Choi H, Li L, Lawrie B, Dyck O, et al. Closed-Loop Electron-Beam-Induced Spectroscopy and Nanofabrication Around Individual Quantum Emitters. arXiv [physics.optics]. 2023. Available: http://arxiv.org/abs/2312.05205

[134] Englund D, Li L, De Santis L, Harris I, Chen K, Christen I, et al. Heterogeneous integration of spin-photon interfaces with a scalable CMOS platform. Research Square. 2023. doi:10.21203/rs.3.rs-3261388/v1

[135] Hu, Y., Nagle, S., Duan, Y., Wang, H., & Englund, D. (2024). Developing 3D Models of Atom-Like Defect Spin Memories in Crystals for Quantum Technology Research and Education. In Journal of Chemical Education. American Chemical Society (ACS). https://doi.org/10.1021/acs.jchemed.4c00343

[136] Harris IBW, Englund D. Coherence of group-IV color centers. Phys Rev B Condens Matter. 2024;109: 085414. doi:10.1103/PhysRevB.109.085414

[137] Zhong Z, Yang M, Lang J, Williams C, Kronman L, Sludds A, et al. Lightning: A reconfigurable photonic-electronic smartnic for fast and energy-efficient inference. Proceedings of the. 2023; 452–472. doi:10.1145/3603269.3604821

[138] Li L, De Santis L, Harris I, Chen KC, Gao Y, Christen I, et al. Heterogeneous integration of spin-photon interfaces with a scalable CMOS platform. 2308.14289 arXiv preprint arXiv. 2023. Available: https://arxiv.org/abs/2308.14289

[139] K. Kuruma, B. Pingault, C. Chia, M. Haas, G. D. Joe, D. R. Assumpcao, S. W. Ding, C. Jin, C. J. Xin, M. Yeh, N. Sinclair, and M. Lončar, “Engineering Phonon-Qubit Interactions using Phononic Crystals.” arXiv: 2310.06236v1 (2023), in review in Nature Physics.

[140] Zhao Y, Renaud D, Farfurnik D, Jiang Y, Dutta S, Sinclair N, et al. Cavity-enhanced narrowband spectral filters using rare-earth ions doped in thin-film lithium niobate. npj Nanophoton. 2024;1: 1–11. doi:10.1038/s44310-024-00023-8

[141] Arrow JÉ, Marsh SE, Meyer JC. A Holistic Approach to Quantum Ethics Education: The Quantum Ethics Project quantumethicsproject. org. Conference on Quantum …. 2023. Available: https://ieeexplore.ieee.org/abstract/document/10313817/  

[142] Arrow JÉ, Marsh SE, Meyer JC. A Holistic Approach to Quantum Ethics Education. arXiv [physics.ed-ph]. 2023. Available: http://arxiv.org/abs/2306.00027

[143] Young S, Brooks C, Pridmore J. Societal implications of quantum technologies through a  technocriticism of quantum key distribution. FMRI Tech Rep. 2024 [cited 7 Aug 2024]. doi:10.5210/fm.v29i3.13571

[144] Anwar RH, Hussain SR, Raza MT. In Wallet We Trust: Bypassing the Digital Wallets Payment Security for Free Shopping. 2024; 541–558. Available: https://www.usenix.org/conference/usenixsecurity24/presentation/anwar