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Course outline

Introductions and Motivations
Quantum networks and EPR pair distribution
Waveguide Basics

15-20 minute break

Materials and Geometries
Fabrication of photonic devices
Current device applications
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Introduction

* Distributed quantum computing
* Clock synchronization

* Quantum-enhanced sensing
* Secure communications
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EPR-Pair distribution

Entanglement swapping:

Source in the middle: QT
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EPR pair generation
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EPR pair generation

I sPDC ___Fwm

Nonlinear Order Second Third
Material accessibility Uncommon Common
Fabrication Capabilities Difficult Easy
Polarization
Yes Yes
Entanglement
Wavelength
Yes Yes
Entanglement
Phase matching Difficult Easy
Pump/EPR-pair waveband Visible/IR IR/IR

EPR-pair generation rate High
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Zoom Poll -1

1) In spontaneous parametric down-conversion, which statement
best describes energy conservation?

A. The signal photon always has higher energy than the pump

B. The pump photon splits into two photons whose total energy equals
the pump energy

C. C. Energy is not conserved due to quantum fluctuations

D. The idler photon carries all the energy of the pump
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EPR Pair Heralding w»

Heralding outcome:

* Signal photons wavelength information

* Confirmed polarization entanglement

* Registered timing/location of heralded EPR pairs in
the network
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Quantum Transmitter/Source

(N

Node:

EPR-pair generation

Heralding Bell-state

measurement (BSM)
Mode converter?

Network Nodes

Transmission link

/

Quantum Receiver/Consumer
Node:

Mode converters
Quantum memories
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Network Nodes

Moaode C_erwcntr
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WSS: Wavelength
selective switch

SPDC: Spontaneous
parametric down
conversion

WSS —
XN
WSS
N
s

Signal

Idler

-

Teller
Elgnal

= Time Tagger I_SF_D'TI @

Single Photon ... EPR-pair generator . :
Single P

Maode {'fnvcrlcr
Cuantum Memory

Consumer Node C IF. Consumer Node B _|| <M Beam Splitter  SourceNodeA ./

A N W A Ml A A i " Al il " el A ' ™




Center for

Quantum Networks ZO O m P O | I _ 2 @

2) In the previous proposed network, which system cannot be
included in a source node?

A. A mode converter

B. Quantum memory

C. Bell-State measurement

D. EPR-pair generator

E. Wavelength Selective Switch (WSS)
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Links - transmission considerations

circuits (PICs)

Direction of
propagation

Free space, fiber, photonics integrated | | hacer
4

* Transmission loss

* Polarization considerations Magredc Bl T Magnetic
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Links - Routing considerations

* Wavelength division multiplexing
* Transmission and routing across the network
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Zoom Poll -3

3) Compared to free-space propagation, waveguides primarily
offer:

A. Higher speed of light

B. No losses

C. Infinite bandwidth

D. Reduced diffraction and controlled propagation
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Consumer Nodes B-F Loss
> Consumer Pair| given source

B C at A

Source / A-B 34 dB
Node

A-C 34 dB
A-D 54 dB
\ Link-disjoint paths B-C 52 dB
with the lowest loss
F N E found in linear time B-D 91 dB
> using Suurballe’s
algorithm C-D 74 dB

R. Bali, et al. "Routing and spectrum allocation in broadband entanglement distribution”, lournal of Selected Areas in Communications (JSAC), Accepted with Major revisions, 2024,
R. Bali, et al. "Routing and Spectrum allocation in broadband EPR-pair distribution®, IEEE International Conference on Communications (ICC), 2024.
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Maximize over assignments, the
minimum number of photon
pairs received by any consumer
pair after loss.
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Routing and Coexistence

Manhattan incumbent local carrier
exchange (ILEC) network

Real network configuration to test
selected spectrum allocation
algorithms.
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Waveguide Basics

, n18inb = nosinbs. sinfl, = —
Snell’'s Law: nq

Critical angle:

NA =nysinf.
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Waveguides Effective Index

A k vector: the vector describing the direction of
propagation of a wave

{er}

Phase constant: 8 = ﬂreffz—ﬂ-

A m =10 m=1 m=72 m=73
(]
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Waveguide Modes
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4) Why must the refractive index of the core be higher than that of
the cladding?

A. To increase absorption in the core

B. To ensure total internal reflection occurs at the interface
C. To reduce scattering losses

D. To allow electrical current to flow
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Waveguide Loss Mechanisms

Coupling loss
Absorption
Radiation
Scattering

— Rayleigh (<< A)
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Polarization and Dispersion

* Dispersion
* Spatial (modal)
e Chromatic

e Polarizatinn
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6) Which type of dispersion arises because different field
distributions travel at different speeds in a waveguide?

A. Material dispersion

B. Chromatic dispersion
C. Modal dispersion

D. Polarization dispersion
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15 Minute Break!
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Photonic devices, materials, and fabrication
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Types of Materials

Material: Examples Thin Film Usual Benefits
Deposition Process

Glass Fused Silica CVD, Sputtering Higher indexes
(Si02),
Chalcogenide
glasses, Various
doped glasses

Polymer Organic: PMMA, Spin Coat Higher thermo-optic
PC coeff.
Inorgainc: Sulfur

SOl Silica (sometimes Full use of silicon
Sapphire) between properties
Si layers
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Thin Film Lithium Niobate (TFLN)

e Used as active source (SPDC)
— Electro-optic response

e Refractive index of ~2.2
e Large mode confinement
e Small structures
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Common Waveguide Geometries

ny Ny
L]
e ny

Channel Embedded Strip

-

Fiber Rib or Ridge Strip Loaded

Planar
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Hollow Core Fibers

PMI

o Decreased loss with hollow

core fibers

o 0.18 dB/km at 1550 nm

o 0.22 dB/KM at 1310 nm

o Potential for order of
magnitude lower loss than

common fibers today 3
« Increased bend loss - limits -]
applications in metro 2
network systems f
« Minimize photon loss in @
guantum networks
(8;0.1 2 3 “ 5 6 7 8 9 10

Jasion et. al. OFC 2020 Rb(cm)
© 20 enter for Quantum
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Other Technologies

Technology: Usual materials Thin Film Deposition | Usual Benefits
Fiber Glasses above as — long propagation
core material distances
Hollow Core Fiber Same as solid core | — Low loss, low
fibers nonlinearities,
Crystalline Same as other Any Frequency
waveguide materials dependent
propagation
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Fabrication

Deposit
Spin coat photoresist

- Maskless
- —_— “ lithography

Top Cladding +
application Photoresist

Removal
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Clean room facilities

e Controlled environment minimizing dust

e PPE required: gown, gloves, etc...
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Material Deposition

e Spin coating
e CVD

— Plasma-enhanced (PECVD)
— Metal-Organic (MOCVD)

e Sputtering
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Spin Coating

e Low cost, simple and fast process
e material must be in a liquid state (in solvent)
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PECVD

e Plasma Enhanced Chemical Vapor
Deposition

e CVD:
— precursor gases enter a vacuum

chamber
— interact with other injected gases

e PECVD:

— lower temperatures due to the
nature of the reaction

— expanding the range of materials

— faster deposition rates than CVD

] Gas Inlet

Q

- < - e ,°
+ ?Iasma 5

Heated Plate

By-products ] J

https://www.ema3d.com/blog/pecvd-revolutionizing-thin-film-
deposition/
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e asolid target material can be:

— heated/ evaporated

— hit with an electron beam

— hit with a high intensity laser
— hit with an lon Beam

e bombardment leads to an
amount of material to launch
towards the substrate.

e Good for electrodes/contacts

Sputtering

Substrat
Vacuum chamber |— i
‘ MFC1+—» —»
Vacuum
>
.0 ® \ T Pump
®
Sputtering A.\ o0 @
gas IF o @
(AD) —
_'i‘_ L Sputtering Target

NanoStructured Coating Co.: https://pvd.ir/fag/
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You are testing a polymer platform for photonic waveguide
architectures. It is delivered dissolved in a liquid solvent, how
would you deposit this film?

a. Spin coating

b. PECVD

c. Dip coating

d. Sputtering Deposition techniques
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Photolithography

® Basic Photolithography process

@)

@)

O

UV exposure (dosage) changes the material properties of
a photoresist layer

The sample is submerged in developer which removes
the exposed (nonexposed) regions of the photoresist if it
is positive (negative)

Etch step removes material in the desired pattern
Deposit top cladding
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E-Beam Lithography

o Similar process to photolithography, only using an
electron beam to spur reactions in the resist layer

O E-beam resist rather than photo resist (similar effects but

through different chemical processes)

Higher resolution (10nm vs 100 nm) at a much higher cost

Lower Scalability than photolithography (larger, more

complicated designs)

o O
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Zoom Poll 7

If you are trying to change the phase information of a photon
in a thin film Lithium Niobate waveguide, what would you do?
a. Deposit an ohmic heater to change the index by
changing the temperature
b. Deposit an electrode over the desired region and apply
an external E-field
c. Pump another laser on the region in the desired
direction
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Mask vs. Maskless

While E-Beam lithography does not require a mask, some
photolithography applications require it.

e Very pricy and time consuming to fabricate
e Great resolution for high complexity architectures

|

-
- O .
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Zoom Poll 8

You are making interconnects between two integrated
circuits. Assuming these interconnects will be straight
waveguides, and you do not have the proper photomask on
hand. What is the proper lithography technique which
minimizes time and costs (assuming you have the proper
equipment)?

a. Create a photomask and use photolithography

b. Use a maskless lithography process

c. E-Beam lithography so that your resolution is maximized
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Etching

Wet Etch Dry Etch

e Step in which the target

material layer is reduced to its profile : -

desired thickness

Etchant Cherical lonized Gas
® Dry: free radICa |S frOm ga Ses Minimum Features = 2um = Single nm
react with substrate electviy High>100x | Low<10x
Throughput High [Batch) Low (Single Wafer)

e Wet: liquid etchants, high
selectivity, larger throughput

Hartensveld, Matthew. (2018). Optimization of Dry and Wet GaN
Etching to Form High Aspect Ratio Nanowires.
10.13140/RG.2.2.19319.11687.
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Zoom Poll 9

What type of lithography process would you use to make a
photonic crystal lattice?
a. Maskless photolithography

b. Electron Beam Lithography
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50/50 splitter

e Y-branch
e Multimode Interference Coupler (MMI)
e Directional Coupler

\/
A

Interaction Region
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Mach-Zehnder Interferometer (MZI)

e [ntensity modulation
e Optical Switching

e Filtering

e Path Encoding
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Zoom Poll 10

After top cladding is placed on a photonic integrated circuit
(PIC), you want to place an electrode for a phase modulator
on one branch of an MZI. You have already deposited and
patterned the desired electrode dimensions. What process
should you use for depositing the metal layer required?

a. Spin coat the molten metal on the wafer

b. Use PECVD to ensure an even layer

c. Sputter the proper metals over the wafer
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Ring Resonators

e Maximize Q factor
— Radius

- Gap R
— Coupling region

. . ga
e Critical coupling
— Light is does not re- —
couple back into the Lc

bus waveguide

Q=v./Av F=FSR/Av
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Why are ring resonators good candidates for nonlinear EPR
sources?
a. For achosen coupling region, pump photons can
propagate over a long enough distance such that

generated photons can appear
b. It is only good for second order materials due to the

larger intensity of their EPR pairs
c. They are not good for EPR pair generation: too much
power is lost no matter the dimensions
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Full System

a. Single-qubit state preparation and measurement

O 5

Heralded State preparation
photon source Qubit measurement

e Ring Resonator generates EPR-pairs, then heralded through
BSM

e Filter systems: MZI’s and Rings filter the pump

e MZI’s are optimized to path encode heralded photons

"A manufacturable platform for
photonic quantum computing.”
Nature 641, no. 8064 (2025): 876-
883.




Center for W
Quantum Networks W

Zoom Poll 12

You have a ring resonator made from a material with high third order
nonlinearity and no second order nonlinearity. The bus waveguide is
already optimized for the pump wavelength. What should you do in order
to maximize the Q-factor without fabricating a new device?
a. Place electrodes on some region of the ring and apply an external
electric field
b. Deposit a Titanium-Gold layer as an ohmic heater
c. Place the entire device on a Peltier device to heat up the ring and
bus waveguide
d. Apply a strain to the resonator
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Foundries

» Sandia National Labs
* Micro/nano fabrication

* Nanostructure/semiconductor
component synthesis

* AIM
* Active/passive MPW
* Silicon and Silicon Nitride
based
* Ligentech

* Active and passive Silicon
Nitride based PICs
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Conclusion

1. Motivations behind Quantum networks and EPR pair
distribution

2. Basics of Waveguide functions, materials and geometries

Integrated photonic device fabrication

4. Applications on integrated photonics in quantum networks

w
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Questions?

Shelbi Jenkins: shelbijenkins@arizona.edu
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Thank you!

- Wyatt Wallis, co-instructor

- Narayanan Rengaswamy, and Mike Raymer
- Center for Quantum Networks

- Brianna Moreno

- Noel Hennessey

- Belicia Lynch

- Jessica Wysong
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