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Course outline

1. Introductions and Motivations
2. Quantum networks and EPR pair distribution
3. Waveguide Basics

15-20 minute break

1. Materials and Geometries
2. Fabrication of photonic devices
3. Current device applications
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Introduction
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EPR-Pair distribution
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EPR pair generation
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EPR pair generation
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SPDC FWM

Nonlinear Order Second Third

Material accessibility Uncommon Common

Fabrication Capabilities Difficult Easy

Polarization 

Entanglement
Yes Yes

Wavelength 

Entanglement
Yes Yes

Phase matching Difficult Easy

Pump/EPR-pair waveband Visible/IR IR/IR

EPR-pair generation rate High Low
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Zoom Poll - 1

1) In spontaneous parametric down-conversion, which statement 

best describes energy conservation?

A. The signal photon always has higher energy than the pump

B. The pump photon splits into two photons whose total energy equals 

the pump energy

C. C. Energy is not conserved due to quantum fluctuations

D. The idler photon carries all the energy of the pump
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EPR Pair Heralding
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Network Nodes
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Network Nodes
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Zoom Poll - 2

2) In the previous proposed network, which system cannot be 

included in a source node?

A. A mode converter 

B. Quantum memory 

C. Bell-State measurement 

D. EPR-pair generator

E. Wavelength Selective Switch (WSS)
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Links - transmission considerations
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Links - Routing considerations
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Zoom Poll - 3

3) Compared to free-space propagation, waveguides primarily 

offer:

A. Higher speed of light

B. No losses

C. Infinite bandwidth

D. Reduced diffraction and controlled propagation
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Routing in repeaterless EPR- distribution networks
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Spectrum Allocation 
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Routing and Coexistence
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Waveguide Basics

Snell’s Law:

Critical angle:  

1
8
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Waveguides Effective Index

n

Phase constant:

k vector: the vector describing the direction of 
propagation of a wave
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Waveguide Modes
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Zoom Poll - 4

4) Why must the refractive index of the core be higher than that of 

the cladding?

A. To increase absorption in the core

B. To ensure total internal reflection occurs at the interface

C. To reduce scattering losses

D. To allow electrical current to flow
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Waveguide Loss Mechanisms

• Coupling loss

• Absorption 

• Radiation

• Scattering

– Rayleigh (<< λ)

– MIE (~λ)

2
2
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Polarization and Dispersion

• Dispersion 

• Spatial (modal)

• Chromatic

• Polarization
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Zoom Poll - 5

6) Which type of dispersion arises because different field 

distributions travel at different speeds in a waveguide?

A. Material dispersion

B. Chromatic dispersion

C. Modal dispersion

D. Polarization dispersion
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15 Minute Break!
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Photonic devices, materials, and fabrication
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Types of Materials

Material: Examples Thin Film 

Deposition Process

Usual Benefits

Glass Fused Silica 

(SiO2), 
Chalcogenide 
glasses, Various 

doped glasses

CVD, Sputtering Higher indexes

Polymer Organic: PMMA, 

PC
Inorgainc: Sulfur

Spin Coat Higher thermo-optic 

coeff.

SOI Silica (sometimes 

Sapphire) between 
Si layers

Full use of silicon 

properties
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Thin Film Lithium Niobate (TFLN)

• Used as active source (SPDC)
– Electro-optic response

• Refractive index of ~2.2
• Large mode confinement
• Small structures
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Common Waveguide Geometries
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Hollow Core Fibers

● Decreased loss with hollow 
core fibers 
○ 0.18 dB/km at 1550 nm
○ 0.22 dB/KM at 1310 nm 
○ Potential for order of 

magnitude lower loss than 
common fibers today

● Increased bend loss - limits 
applications in metro 
network systems

● Minimize photon loss in 
quantum networks

Jasion  et. al. OFC 2020
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Other Technologies

Technology: Usual materials Thin Film Deposition Usual Benefits

Fiber Glasses above as 

core material

— long propagation 

distances

Hollow Core Fiber Same as solid core 

fibers

— Low loss, low 

nonlinearities, 

Crystalline Same as other 

waveguide materials

Any Frequency 

dependent 
propagation
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Fabrication

3
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Clean room facilities

3
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• Controlled environment minimizing dust

• PPE required: gown, gloves, etc…
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Material Deposition
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• Spin coating
• CVD

– Plasma-enhanced (PECVD)
– Metal-Organic (MOCVD)

• Sputtering
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Spin Coating
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• Low cost, simple and fast process
• material must be in a liquid state (in solvent)

{picture of a spin curve}
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PECVD 

3
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• Plasma Enhanced Chemical Vapor 
Deposition

• CVD:
– precursor gases enter a vacuum 

chamber
– interact with other injected gases 

• PECVD: 
– lower temperatures due to the 

nature of the reaction 
– expanding the range of materials
– faster deposition rates than CVD

https://www.ema3d.com/blog/pecvd-revolutionizing-thin-film-
deposition/
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Sputtering

3
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• a solid target material can be:
– heated/ evaporated
– hit with an electron beam
– hit with a high intensity laser
– hit with an Ion Beam

• bombardment leads to an 
amount of material to launch 
towards the substrate.

• Good for electrodes/contacts

NanoStructured Coating Co.: https://pvd.ir/faq/
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Zoom Poll 6

You are testing a polymer platform for photonic waveguide 

architectures. It is delivered dissolved in a liquid solvent, how 

would you deposit this film?

a. Spin coating

b. PECVD

c. Dip coating

d. Sputtering Deposition techniques
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Photolithography

3
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● Basic Photolithography process
○ UV exposure (dosage) changes the material properties of 

a photoresist layer
○ The sample is submerged in  developer which removes 

the exposed (nonexposed) regions of the photoresist if it 
is positive (negative)

○ Etch step removes material in the desired pattern
○ Deposit top cladding
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E-Beam Lithography

4
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○ Similar process to photolithography, only using an 
electron beam to spur reactions in the resist layer

○ E-beam resist rather than photo resist (similar effects but 
through different chemical processes)

○ Higher resolution (10nm vs 100 nm) at a much higher cost
○ Lower Scalability than  photolithography (larger, more 

complicated designs)
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Zoom Poll 7

If you are trying to change the phase information of a photon 

in a thin film Lithium Niobate waveguide, what would you do?

a. Deposit an ohmic heater to change the index by 

changing the temperature

b. Deposit an electrode over the desired region and apply 

an external E-field

c. Pump another laser on the region in the desired 

direction



© 2023 Center for Quantum Networks

Mask vs. Maskless

4
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While E-Beam lithography does not require a mask, some 
photolithography applications require it.

• Very pricy and time consuming to fabricate
• Great resolution for high complexity architectures
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Zoom Poll 8

You are making interconnects between two integrated 

circuits. Assuming these interconnects will be straight 

waveguides, and you do not have the proper photomask on 

hand. What is the proper lithography technique which 

minimizes time and costs (assuming you have the proper 

equipment)?

a. Create a photomask and use photolithography

b. Use a maskless lithography process

c. E-Beam lithography so that your resolution is maximized
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Etching

• Step in which the target 
material layer is reduced to its 
desired thickness

• Dry: free radicals from gases 
react with substrate

• Wet: liquid etchants, high 
selectivity, larger throughput

Hartensveld, Matthew. (2018). Optimization of Dry and Wet GaN 
Etching to Form High Aspect Ratio Nanowires. 
10.13140/RG.2.2.19319.11687. 
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Zoom Poll 9

What type of lithography process would you use to make a 

photonic crystal lattice?

a. Maskless photolithography

b. Electron Beam Lithography
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50/50 splitter

• Y-branch 
• Multimode Interference Coupler (MMI)
• Directional Coupler

Ansys
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Mach-Zehnder Interferometer (MZI)

• Intensity modulation
• Optical Switching
• Filtering
• Path Encoding
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Zoom Poll 10

After top cladding is placed on a photonic integrated circuit 

(PIC), you want to place an electrode for a phase modulator 

on one branch of an MZI. You have already deposited and 

patterned the desired electrode dimensions. What process 

should you use for depositing the metal layer required?

a. Spin coat the molten metal on the wafer

b. Use PECVD to ensure an even layer

c. Sputter the proper metals over the wafer
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Ring Resonators

• Maximize Q factor
– Radius
– Gap 
– Coupling region

• Critical coupling
– Light is does not re-

couple back into the 
bus waveguide

R

Lgap

LC

Q = νres/ Δν F = FSR / Δν
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Zoom Poll 11

Why are ring resonators good candidates for nonlinear EPR 

sources?

a. For a chosen coupling region, pump photons can 

propagate over a long enough distance such that 

generated photons can appear

b. It is only good for second order materials due to the 

larger intensity of their EPR pairs

c. They are not good for EPR pair generation: too much 

power is lost no matter the dimensions
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Full System

• Ring Resonator generates EPR-pairs, then heralded through 
BSM

• Filter systems: MZI’s and Rings filter the pump
• MZI’s are optimized to path encode heralded photons

"A manufacturable platform for 

photonic quantum computing." 

Nature 641, no. 8064 (2025): 876-

883.
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Zoom Poll 12

You have a ring resonator made from a material with high third order 
nonlinearity and no second order nonlinearity. The bus waveguide is 
already optimized for the pump wavelength. What should you do in order 
to maximize the Q-factor without fabricating a new device?

a. Place electrodes on some region of the ring and apply an external 
electric field

b. Deposit a Titanium-Gold layer as an ohmic heater
c. Place the entire device on a Peltier device to heat up the ring and 

bus waveguide
d. Apply a strain to the resonator
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Foundries
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Conclusion

1. Motivations behind Quantum networks and EPR pair 
distribution

2. Basics of Waveguide functions, materials and geometries
3. Integrated photonic device fabrication
4. Applications on integrated photonics in quantum networks 
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Questions?

Shelbi Jenkins: shelbijenkins@arizona.edu
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Thank you!

- Wyatt Wallis, co-instructor 
- Narayanan Rengaswamy, and Mike Raymer 
- Center for Quantum Networks 
- Brianna Moreno
- Noel Hennessey
- Belicia Lynch
- Jessica Wysong
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