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Outline of this part

Introduction to Defects in Solid-State Systems
*  Quantum dots: a good single-photon emitter
. Color center: an atomic-like defect with spin
1. Color Centers in Diamond for Quantum Memories
. NV centers
. Group-1V vacancy centers
lll.  Control of Color Centers in Diamond
. Strain tuning
. Zeeman splitting — External magnetic field tuning
. Hyperfine interaction — Nuclear spin coupled to electron spin
IV.  State-of-the-art Demonstrations of Color Centers in Diamond in Quantum Networks
. NV center in bulk diamond
. SiV center strongly coupled to a photonic crystal cavity
Poll questions

# Take-home message labelled in red.
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Solid-state systems

Intro-level solid-state physics research target:

Scalable (compatible to

semiconductor industry)

» Perfect crystal made of periodic atom lattices — translational symmetry

» Electron behaves as waves whose wavefunction is solved by Bloch’s Theorem
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Figure. 1 Bloch Theorem: (a) Periodic lattice and the effective potential, (b) Bloch wave, (c) band structure,

(d) Brillouin zone and Fermi Surface. From https://courses.physics.ucsd.edu/2018/Fall/physics211a/topic/bloch.pdf
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Defects in solid-state systems

Defects — Break the translational symmetry - More interesting physics: two-level system = qubits

» Structural confinement (1~10 nm) — Quantum dots
» Missing/replacing/doping particles (~0.1 nm) — Color centers

Long coherence time
= quantum memory

.l‘\u'\\‘\,il\i!‘“ -

https://www.eng.cam.ac.uk/news/let-there-be-light-deterministic-arrays-quantum-emitters

https://dtrinkle.matse.illinois.edu/MatSE584/index.html
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Quantum Dots: a good single-photon emitter

Structural confinement - Localized electron wavefunction, discretized energy levels

Bulk crystal (3D) Quantum Well (2D) Quantum Wire (1D) Quantum Dot (0D)

Wikipedia: SEM image of an InGaAs quantum dot
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Emission wavelength (band gap) is Good on-demand single-photon emitter:
determined by the size of quantum dot One excitation gives one emitted photon
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https://www.sciencedirect.com/topics/engineering/quantum-confinement

https://phys.org/news/2010-09-japanese-quantum-cryptographic-key-single-photon.html

https://analyticalscience.wiley.com/content/article-do/super-resolution-meets-quantum-optics
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Applications of quantum dots

Bioimaging and medicine Quantum information
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Color center: an atomic-like defect with spin

Missing/replacing/doping particles - like a trapped atom (electron orbit) in the crystal lattice

NV~ center in Diamond F ('Farbzentrum') center in NaCl
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Wikipedia: Nitrogen-vacancy center
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Color center vs. Quantum dot

Smaller size (~0.1 nm): by vacancy » Better spin (qubit) property —
of host atoms or other doped atoms => longer coherence time (also
Atom-like electron orbit & energy depending on host material:
level within the host bandgap Diamond is great as C'? has
zero nuclear spin)
Color center m=> Good quantum memory - Emission wavelength tuning
in diamond range is limited
« Larger size (1~10 nm) : many atoms « Emission wavelength can be
forms a structure engineered
« Creating discrete energy levels > . Higher emission rate

within the bandgap (Brighter)

Quantum dot === Good single-photon source

© 2023 Center for Quantum Networks
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Applications of color centers in diamond
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Neliubov, A.Y. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 3), S421-S428 (2023).
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Types of color center in diamond

Is Diamond transparent? No, high-density color centers make them colorful

NE8= 782-802 nm
NiSi = 767-775 nm
Cr== 740-790 nm
siv X 730-750 nm

NV 637.0m ﬂ
3+_lllllllll—
NV° 575 nm
STH 550 nm
»532 nm
H3 503 nm
R12 470 nm
R12 1 l | ] | | Wavelength
I | 1 1 1 1 1 (nm)
450 500 550 600 650 700 750 800
https://www.zaquant.uni-stuttgart.de/projects/microdiamonds/ Aharonovich, I. & Neu, E. Diamond Nanophotonics. Adv. Opt. Mater. 2, 911-928 (2014)
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Diamond color centers is categorized by symmetry (geometry / arrangement), and doped atom

A g S ek -5 o .
@) a 4 cs :
NPS % %
. ’ Cyclic . - — — . . . .
Figure 1: Structures and spin polarization densities of spin-defects in diamond, including

D2 D3 D4 D5 the negatively—ch:fmrged nit‘:rogen—vacancy (NV) center, and the neutral group-IV vacancy
' A ) complexes XV (with X=Si, Ge, Sn, and Pb).
l '- ‘ . Dihedral Ma, H., Sheng, N., Govoni, M., & Galli, G. Physical Chemistry Chemical Physics, 22(44), 25522-25527 (2020).
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Nitrogen Vacancy (NV) center in diamond

Phonon coupled states

Two unpaired electrons in NV- A :ﬁ N 1
|Ew z> JE ---m,:-»‘l
6 B b ' e — T,
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Thiering, G., & Gali, A. arXiv:1803.02561. (2018). Wikipedia: Nitrogen-vacancy center

Still not as good as an atom in the vacuum: Under non-zero temperature, the electron wavefunction couples to
phonon (AC vibrations) of host crystal lattice — dynamic Jahn-Teller effect

© 2023 Center for Quantum Networks
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Zero-phonon line (ZPL) and phonon sideband

From zero-phonon-coupled excited state decaying to zero-phonon-coupled ground state

NV Photoluminescence (PL) spectrum  Why broad? Phonon sideband =~ Why continuous? Various

ZPL 637 am phonon processes
8001 Wikipedia: Phot};luminescence
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Gruber, A., et al, Science, 276(5321), 2012-2014. (1997) Eq
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Debye-Waller Factor is ~3%: only 3% a0 i o
I|ght IS emltted as ZPI— Wavelength Wikipedia: Franck—Condon principle Wikipedia: Zero-phonon line and phonon sideband
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Optically Detected Magnetic Resonance (ODMR)

Gruber, A., et al, Science, 276(5321), 2012-2014. (1997)

» High ODMR contrast

* Further lower the
=+ in-
i ms = 1 useful spin-photon Encomblo
entanglement rate
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frequency =
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ms = +1 = “ Tzym Zeeman 3
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Mg = () — = | —_——————
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Application: sensing external magnetic field T
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Generating spin-photon entanglement by NV
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‘ /\ Bernien, Hannes, et al. Nature 497.7447, 86-90, (2013)

|g)g|0>ph + |§)g|1>ph => |#)g|1:0)ph+ |¢>g|0:1>ph

NV electron spin has a good coherence time T2 ~ 2 ms @ room temperature

Balasubramanian, G., Neumann, P., Twitchen, D. et al. Nature Mater 8, 383-387 (2009).
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Group-IV vacancy center in diamond: SiV, SnV, GeV, PbV

Comparing to NV:

*  One unpaired electron S=1/2.

*  Spin-orbital coupling — ground & excited
state zero-field splitting = four energy
levels without external B field, sensitive
to strain/phonon.

* |nversion symmetry — less sensitivity to
charge noises = can be integrated close
to surface or nanostructures

* No intersystem crossing — higher
generation rate of spin-photon
entanglement

+ Debye-Waller Factor is ~70% — less
phonon sideband

Bradac, C., Gao, W., Forneris, J. et al. Nat Commun 10, 5625 (2019).
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At 4K, PL resolves four optical transitions

a ! & g b

10} 0 - g Upper branch SiV _can only keep long spin
= o ® Excited — 9 Ay =250 GHz coherence time at sub-1K due to
[0} state % fiqr
2 \<m>g_ 3 S T —— ground-state splitting ~50GHz.
s e |
205 L 1
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= : ¥ Vo Upper branch If working at 4K, thermal photon
0.0 A 7 ey Ground —— | v I Ag=50 GHz L.
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736.5 737.0 737.5

Wavelength (nm) phonon (lattice vibration) will

cause random flips between two
Miiler, T, Hepp, C., Pingault, B., Neu, E., Gsell, S., Schreck, M., ... & Atatiire, M. Nature communications, 5(1), 3328 (2014).  JrOU nd-states branches.
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Control knobs

Why do we need to control the color center?

We need to save quantum states into nuclear spin with much longer
coherence time. We may also need to compensate the spectral diffusion

Other than RF/MW pulse control (Rabi oscillation), what other control knobs do we have?

ﬁ
1. Strain — deform the crystal lattice > adds to the zero-field splitting @

2. External B-field — Zeeman effect - split different spin states

3. Nuclear spin — Hyperfine interaction between electron spin and nuclear spin = energy splitting

H = DS? +gugB-S+ S-A-I +E(S:-85))
Hﬂ
v RH . N ~~
Zero-Field Splitting Zeeman Effect Hyperfine Interaction derain

>y
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Strain tuning

Inhomogeneous broadening by unknown local strain

i 5 T ——— Strain tuning can significantly increase
5 107 w— 20 the ground-state zero field splitting to
5 . : o s ~THz, keeping the system coherent
5 ‘ H ‘ when working at a higher temperature.
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Meesala, S., et al. Physical Review B, 97(20), 205444 (2018).

© 2023 Center for Quantum Networks



~ Center for
'/ Quantum

Networks

NSF Engineering Research Center

Acoustic wave (phonon) is used to pump the
transition instead of using microwave (photon)

Fluorescence (a.u.) Q.

Maity, S.,

‘Carbon
Silicon =
o.0%

‘ Vacancy

Detuning (GHz)

250 GHz

ley, &)

car.ca

Optical
(737 nm)

leg. )

50 GHz

1e,:4)

“ileg, T

Acoustic
(3.43 GHz)

Acoustic control

coupling to ground-state splitting

L]
-3

Phonon crystal creates phonon bandgap to reduce phonon

Frequency (GHz)

k, (mt/a)

#SiV region

PalooKEadohdooooqoocs
¥ 300 n

L
ge
)
0

DOS (10 Hz'm™)

Kuruma, K., Pingault, B., Chia, C. et al. Nat. Phys. 21, 77-82 (2025).

Shao, L., Bogdanovic¢, S. et al. Nat Commun 11, 193 (2020)
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Zeeman splitting: External magnetic field tuning
The key to implement spin-control with RF and MW

SivV NV
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Muller, T., Hepp, C., Pingault, B., Neu, E., Gsell, S., Schreck, M., ... & Atatire, M. Nature communications, 5(1), 3328 (2014). @ nO ml
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Hyperfine interaction — Nuclear spin

Now we can control two spin qubits by RF and MW
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Lilian Childress and Ronald Hanson, MRS Bulletin , Volume 38 , Issue 2:
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Stas, P-J., et al. Science 378.6619, 557-560 (2022).
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Do we need nuclear spin for color center in diamond
guantum memory?

Yes. Nuclear spins have small magnetic moments, effectively decoupling them from environmental noise.

For NV quantum memory:
» Electron coherence time is limited by the magnetic noise of other C'3 spin bath.
* The nuclear spin is immune to this dipolar noise, extending storage from ms to seconds and
potentially minutes.
« Can free electron spin for sensing tasks.

For Group-IV quantum memory:
» Electron coherence can be destroyed by thermal phonons (orbital mixing) at 4K.
* The nucleus has no orbital angular momentum to couple to phonons, enabling quantum memory
keep coherence at a slightly higher temperature.

© 2023 Center for Quantum Networks
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Dynamical decoupling

SiV state save to Si?° nuclear spin SiV state save to electron spin
B (€)14
el41/2 —P I|XY8|| P & Ir7<| 712 2
=i [ oD |— 2} 10 2
J' T ol g Laser f . |initialization T read v g 7
Swap Hold Read N %6 ("
. n=1 MW, |%| (Tlﬂlt)l%l g 4 o
oo T e §2
- . —— n=1024 0 OPT TTT TR TP ToeT
zosf ® Rumber of ropulses ()
2% 1o Extension of the coherence time T2 of the SiV nuclear
[72] .
oo .\ \X| spinto 2s (State of the art) much longer than the electron
10? N N . . .
g "]  spin (DD applied) with T2~13 ms
10 T00 T000
Total storage time (ms) Sukachev, Denis D., et al. Physical review letters 119(22), 223602 (2017).

Stas, P-J., et al. Science 378.6619, 557-560, (2022).
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V. State-of-the-art Demonstrations of Color
Centers in Diamond in Quantum Networks
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NV center in bulk diamond with solid immersion Iens‘

Center for

Seminal works from Hanson Group (QuTech, Delft)

Remote entanglement between 2 NVs
Bernien, Hannes, et al. "Heralded entanglement between solid-state qubits
separated by three metres." Nature 497, 86-90 (2013)

Loophole-free Bell Inequality Violation v ok
Hensen, B. et al. "Loophole-free Bell inequality violation using electron Solid immersion lens: enhance

spins separated by 1.3 kilometres." Nature 526, 682—686 (2015). the photon collection
Entanglement Distillation Alice
Kalb, N. et al. "Entanglement distillation between solid-state quantum i . W

Memory qubit

network nodes." Science 356, 928-932 (2017).

30me

Long-distance
entanglement

Multi-Node Quantum Network
Pompili, M. et al. "Realization of a multinode quantum network of remote L /
solid-state qubits." Science 372, 259-264 (2021). = P

Charlie Optical fiber
connection

Qubit Teleportation
Hermans, S.L.N. et al. "Qubit teleportation between non-neighbouring

nodes in a quantum network.” Nature 605, 663668 (2022). Entanglement rate: 10 Hz (1 link)

~0.025 Hz (2 links with swap)

© 2023 Center for Quantum Networks
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SiV center strongly coupled to a photonic crystal caV|ty

Seminal works from the Lukin & Loncar Group (Harvard University)

Foundations of Integrated SiV Nanophotonics
Sipahigil, A. et al. "An integrated diamond nanophotonics platform for
quantum-optical networks." Science 354, 847-850 (2016).

Photon-Mediated Interactions
Evans, R. et al. "Photon-mediated interactions between quantum emitters \/
in a diamond nanocavity." Science 362, 662—665 (2018).

05 10

Node A |4n) #

Memory-Enhanced Quantum Communication Heortetenc oty
Bhaskar, M. et al. "Experimental demonstration of memory-enhanced

quantum communication.” Nature 580, 60—64 (2020), Reflect-cavity acts as a control-

transmission gate between the photon

Multi-Node Quantum Network and spin states

Stas, P. J. et al. “Robust multi-qubit quantum network node with integrated | ...crosea - ) (wvor) Rk
error detection.” Science 378, 557-560 (2022). Blectron node A | PHONE [}

Photon + M_i_’ﬁ

Telecom Quantum Network over Boston i"*l‘ :Z i g = (2] o
Knaut, C.M., Suleymanzade, A., Wei, YC. et al. Entanglement of — ;:: -
nanophotonic quantum memory nodes in a telecom network. Nature 629, entanglement generation  decoupling detection measurement
573-578 (2024). Entanglement rate: 0.25 Hz over 35 km
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Poll questions

Poll question 6

Which of the following is NOT an advantage of using color centers as quantum memories?
A.Very long coherence times

B. Efficient spin—photon interfaces

C. Good scalability

D. Operation at room temperature

Poll question 7

What is the approximate zero-phonon-line (ZPL) emission wavelength of the SiV centerin
diamond?

A.637 nm

B.737 nm

C. 1550 nm

D. 493 nm

© 2023 Center for Quantum Networks
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Poll questions

Poll question 8

What is the approximate zero-phonon-line (ZPL) emission wavelength of the NV center in diamond?
A.637 nm

B.737 nm

C. 1550 nm

D. 493 nm

Poll question 9

Which statement best describes the hyperfine interaction in a diamond color-center system?
A. The interaction between the electron spin and the nuclear spin

B. The interaction between an external magnetic field and the electron spin

C. The interaction between an external magnetic field and the nuclear spin

D. The interaction between the electron’s orbital motion and its spin

© 2023 Center for Quantum Networks
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Poll questions

Poll question 10

Which type of energy-level splitting is most sensitive to lattice strain (considering relative percentage
change)?

A. Hyperfine splitting

B. Zeeman splitting

C. Spin-orbit-induced splitting

D. The energy gap between the ground and excited electronic states (ZPL energy)

Poll question 11

Which of the following statements is NOT true?

A. The SiV center is formed when a silicon atom occupies a split-vacancy site between two missing
carbon atoms

B. The NV center is formed by replacing two neighboring carbon atoms with one nitrogen atom in the
middle

C. The SiV center has inversion symmetry, while the NV center does not, making SiV less sensitive to
charge noise

D. Both SiV and NV centers typically require cryogenic temperatures to achieve long spin coherence
times

© 2023 Center for Quantum Networks 34
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Questions?
Contact me at chaohan@umd.edu
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