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Digital communications and storage
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Inside the box: Channel + Detector errors
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Noisy memoryless channels

Channel

𝑥1, 𝑥2, 𝑥3, 𝑥4…
𝑝(𝑦𝑖|𝑥𝑖)
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Simple memoryless channels

• Binary erasure channel (BEC)

• Binary symmetric channel (BSC)

• Binary input additive white Gaussian 

noise (AWGN) channel, s 2
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Channel capacity – Binary Erasure Channel
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We lose a fraction 𝜀 of the bits. How do we recover that data?

𝐶

𝐶 = 1 − 𝜀 bits/channel use

01/05/2023 7



Poll Question 1

Let 𝒙 = [𝑥1, . . . , 𝑥𝑛] be a codeword transmitted over a memoryless channel and let 

𝒚 = [𝑦1, . . . , 𝑦𝑛] be the corresponding channel output. Then the conditional 

probability density 𝒑 𝒚|𝒙 can be written as

A. 𝑝 𝒚|𝒙 = σ𝑖=1
𝑛 𝑝 𝑦𝑖 𝑥𝑖

B. 𝑝 𝒚|𝒙 = 𝑝 𝑦1 𝑥1 𝑝 𝑦2 𝑥2 𝑝 𝑦3 𝑥3 ⋯𝑝 𝑦𝑛−1 𝑥𝑛−1 𝑝 𝑦𝑛 𝑥𝑛

C. 𝑝 𝒚|𝒙 = 𝑝 𝑦1 𝑥2 + 𝑝 𝑦2 𝑥3 + 𝑝 𝑦3 𝑥4 +⋯+ 𝑝 𝑦𝑛−1 𝑥𝑛

D. 𝑝 𝒚|𝒙 = 𝑝 𝑦1 𝑥2 ∪ 𝑝 𝑦2 𝑥3 ∪ 𝑝 𝑦3 𝑥4 ∪⋯∪ 𝑝 𝑦𝑛−1 𝑥𝑛

E. 𝑝 𝒚|𝒙 = 𝑝 {𝑦1+𝑦2+ ,…+ 𝑦𝑛} ∪ {𝑥1+𝑥2 +⋯+ 𝑥𝑛}

F. None of the above
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Channel coding

Channel

1 0 1 𝟎 0… 1 0 1 ? 0…

Channel

111 000 111 𝟎𝟎𝟎 [000]… 111 000 111 ? 𝟎𝟎 [000]…

Channel Coding = Add Redundancy

But the 𝑛-bit repetition code sends just 1 bit / 𝑛 channel uses!𝐶 = 1 − 𝜀 :
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Error Correction Coding (ECC)

• The decoder tries to find ෝ𝒙 ( or ෝ𝒎 ) from 𝒚 so that the 

probability of bit/codeword error is minimal.

• In other words, decoder tries to find a codeword that is 

“closest” to 𝒚.

Encoder DecoderChannel

• Message: 𝒎 = [𝑚1, 𝑚2, … ,𝑚𝑘]

• Codeword: 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛]

• Code rate: 𝑅 =
𝑘

𝑛
≤ 𝐶 (Capacity) ≤ 1

• Received word: 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝒎 𝒙 𝒚 ෝ𝒙

ෝ𝒎
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𝑛, 𝑘 binary linear codes

Generator matrix (𝑘 × 𝑛): 𝐺 =

𝒈𝟏
𝒈𝟐
⋮
𝒈𝒌

∈ 0,1 𝑘×𝑛 (rank 𝑘 binary matrix)

Encoding: 𝒙 = 𝒎𝐺 = 𝑚1𝒈𝟏 +𝑚2𝒈𝟐 +⋯+𝑚𝑘𝒈𝒌 ∈ 0,1 𝑛 (XOR)

𝑛-bit Repetition Code: 𝐺 = 𝒈 = 1 1 1 ⋯ 1

𝒎 = 𝑚
𝐸𝑛𝑐𝑜𝑑𝑒

𝒙 = 𝒎𝐺 = 𝑚 𝑚 𝑚 ⋯ 𝑚

[𝑛 = 5, 𝑘 = 2] Code: (contains 2𝑘 = 4 codewords to encode 2𝑘 = 4 messages)

𝐺 =
1 0 1 0 1
0 1 1 1 0

𝒎 = 0 0
𝒎 = 0 1
𝒎 = 1 0
𝒎 = 1 1

𝒙 = 0 0 0 0 0
𝒙 = 0 1 1 1 0
𝒙 = 1 0 1 0 1
𝒙 = 1 1 0 1 1

𝐸𝑛𝑐𝑜𝑑𝑒

𝐸𝑛𝑐𝑜𝑑𝑒

𝐸𝑛𝑐𝑜𝑑𝑒

𝐸𝑛𝑐𝑜𝑑𝑒
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Parity-check matrix

[𝑛 = 5, 𝑘 = 2] Code: (contains 2𝑘 = 4 codewords to encode 2𝑘 = 4 messages)

𝐺 =
1 0 1 0 1
0 1 1 1 0

=

𝒈𝟏
𝒈𝟐
⋮
𝒈𝒌

𝒎 = 0 0
𝒎 = 0 1
𝒎 = 1 0
𝒎 = 1 1

𝒙 = 0 0 0 0 0
𝒙 = 0 1 1 1 0
𝒙 = 1 0 1 0 1
𝒙 = 1 1 0 1 1

𝐸𝑛𝑐𝑜𝑑𝑒

𝐸𝑛𝑐𝑜𝑑𝑒

𝐸𝑛𝑐𝑜𝑑𝑒

𝐸𝑛𝑐𝑜𝑑𝑒

Encoding: 𝒙 = 𝑚1 𝑚2 𝐺 = 𝑚1 𝑚2 𝑚1 +𝑚2 𝑚2 𝑚1

= 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Parity-checks: 𝑠1 = 𝑥1 + 𝑥2 + 𝑥3 = 𝑚1 +𝑚2 + 𝑚1 +𝑚2 = 0
𝑠2 = 𝑥2 + 𝑥4 = 𝑚2 +𝑚2 = 0
𝑠3 = 𝑥1 + 𝑥5 = 𝑚1 +𝑚1 = 0

𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

=

𝒉1
𝒉2
⋮

𝒉𝑛−𝑘

; 𝒔 =

𝑠1
𝑠2
𝑠3

= 𝐻𝒙𝑻 = 𝐻

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

=

0
0
0
0
0

Syndrome

𝐻𝐺𝑇 𝑚𝑇 = 0 ⇒ 𝐻𝐺𝑇 = 0

Parity-check 

matrix 

(𝑛 − 𝑘) × 𝑛:

Center for
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Poll Question 2

For an [𝑛, 𝑘] linear block code, what are the dimensions of the generator and parity-

check matrices?

A. 𝐺: 𝑘𝑛 × 𝑛 and 𝐻: (𝑛 − 𝑘)𝑛 × 𝑛

B. 𝐺: 𝑘 × 𝑛 and 𝐻: (𝑛 − 𝑘) × 𝑛

C. 𝐺: 𝑘 × 𝑘 and 𝐻: (𝑛 − 𝑘) × (𝑛 − 𝑘)

D. 𝐺: 𝑛 × 𝑘 and 𝐻: 𝑛 × 𝑛 − 𝑘
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Correcting errors

𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

; 𝒔 = 𝐻𝒙𝑻 = 𝟎

Syndrome

Encoder DecoderChannel

𝒎 𝒙 𝒚 ෝ𝒙

ෝ𝒎

Channel = BEC: 𝒚 = 1 𝐸 0 1 1
𝐷𝑒𝑐𝑜𝑑𝑒

ෝ𝒙 = 1 1 0 1 1

𝒚 = 1 𝐸 𝐸 1 1
𝐷𝑒𝑐𝑜𝑑𝑒

ෝ𝒙 = 1 1 0 1 1

𝒙 = 0 0 0 0 0
𝒙 = 0 1 1 1 0
𝒙 = 1 0 1 0 1
𝒙 = 1 1 0 1 1

Codebook

Channel = BSC: 𝒆 = 0 1 0 0 0 ; 𝒔 = 𝐻𝒚𝑻 = 𝐻 𝒙 + 𝒆 𝑇 = 𝐻𝒆𝑻 = 1 1 0 𝑇

𝒚 = 1 0 0 1 1
𝐷𝑒𝑐𝑜𝑑𝑒

ෝ𝒙 = 𝒚 + 𝒆 = 1 1 0 1 1
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Protecting information by coding

all words of length n
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Protecting information by coding

codewords

all words of length n
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Maximum likelihood decoding
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Poll Question 3

Consider the code with the following parity-check matrix

𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

and assume that the channel output is 𝒚 = 1 1 0 0 0 . The syndrome is then: 

A. 𝒔 =
1
0
0

B. 𝒔 =
2
1
1

C. 𝒔 = 3

D. 𝒔 = 6

E. 𝒔 = 23

F. None of the above

G. I’m not sure
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Poll Question 4

Consider the code with the following parity-check matrix

𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

and assume that the channel output is 𝒚 = 0 0 0 0 𝐸 , where E is the erasure symbol. 

The erasure decoder will produce the following vector as the output: 

A. 𝒙 = 0 0 0 0 0

B. 𝒙 = 0 0 0 0 1

C. 𝒆 = 0 0 0 0 1

D. 𝒎 = 0 0 1

E. 𝒎 = 0 1

F. None of the above

G. I’m not sure
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Minimum distance

Hamming distance = the number of positions in which two binary vectors differ

Minimum distance = the Hamming distance between two closest codewords
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𝑛 = 5, 𝑘 = 2, 𝑑 = 3 linear block code

𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

; 𝒔 = 𝐻𝒙𝑻 = 𝟎

Syndrome𝒙𝟏 = 0 0 0 0 0
𝒙𝟐 = 0 1 1 1 0
𝒙𝟑 = 1 0 1 0 1
𝒙𝟒 = 1 1 0 1 1

Codebook

Hamming distance = the number of positions in which two binary vectors differ

Minimum distance 𝑑 = the Hamming distance between two closest codewords

= the Hamming distance between 𝒙𝟏 and 𝒙𝟐
= the Hamming distance between 𝒙𝟏 and 𝒙𝟑
= the Hamming distance between 𝒙𝟐 and 𝒙𝟒
= the Hamming distance between 𝒙𝟑 and 𝒙𝟒
= 3

The code encodes 𝑘 = 2 message bits into 𝑛 = 5 code bits with distance 𝑑 = 3

Hamming spheres of radius 𝑡 =
𝑑−1

2
= 1 around codewords don’t intersect

Code corrects 𝑡 = 1 error or 𝑑 − 1 = 2 erasures; detects 𝑑 − 1 = 2 errors
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Minimum distance

Hamming distance = the number of positions in which two binary vectors differ

Minimum distance = the Hamming distance between two closest codewords

𝑑 = 3

𝑡 = 1

𝑛
𝑡
= 5 vectors at Hamming distance 𝑡 = 1 from any codeword

Hamming spheres
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Dual code 𝐶⊥

𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

; 𝒔 = 𝐻𝒙𝑻 = 𝟎

Syndrome

𝒙𝟏 = 0 0 0 0 0
𝒙𝟐 = 1 0 1 0 1
𝒙𝟑 = 0 1 1 1 0
𝒙𝟒 = 1 1 0 1 1

Code 𝐶

𝐺 =
1 0 1 0 1
0 1 1 1 0

Generator

and

Parity-check

Duality (Orthogonality): 𝐺𝐻𝑇 = 0 Dual Code Row space of 𝐻:  𝑥𝑖𝑣𝑗
𝑇 = 0

𝒗𝟏 = 0 0 0 0 0
𝒗𝟐 = 1 1 1 0 0
𝒗𝟑 = 0 1 0 1 0
𝒗𝟒 = 1 0 0 0 1
𝒗𝟓 = 1 0 1 1 0
𝒗𝟔 = 0 1 1 0 1
𝒗𝟕 = 1 1 0 1 1
𝒗𝟖 = 0 0 1 1 1

Code 𝐶⊥

Code 𝐶 ∶ [𝑛 = 5, 𝑘 = 2, 𝑑 = 3]

Code 𝐶⊥: [𝑛 = 5, 𝑘⊥ = 𝑛 − 𝑘 = 3, 𝑑⊥ = 2]
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Protecting information by coding
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Linear block codes
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Dimension of a linear block code

{𝒈1, 𝒈2, … , 𝒈𝑘} basis for code 𝐶

{𝒉1, 𝒉2, … , 𝒉𝒏−𝑘} the basis of 𝐶⊥

𝒈2

𝒉1

𝒈1

Center for
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Parity check

𝒈1

𝒈2

𝒉1

𝒙
𝒙 ⋅ 𝒉1

𝑇 = 0

𝒈1
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Parity check

𝒈2

𝒉1

𝒙

𝒙 ⋅ 𝒉1
𝑇 = 0

𝒈1
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Parity check

𝒈2

𝒉1

𝒙
𝒙 ⋅ 𝒉1

𝑇 = 0

𝒈1
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Syndrome

𝒈2

𝒉1

𝒚

𝒔𝑻 = 𝒚 ⋅ 𝒉1
𝑇 ≠ 0

𝒈1
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Poll Question 5

A linear block code with minimum distance d can correct any 

A. weight - (𝑑 − 1) errors

B. weight -
𝑑−1

2
errors

C. weight -
𝑑

2
errors

D. weight -
𝑑

2
+ 1 errors

E. I’m not sure
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[7,4,3] Hamming code

0 0 0 0 0 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 0 1 1 0 1 0
1 0 0 0 1 1 0
0 1 0 1 1 1 0
1 0 1 0 0 0 1
0 1 1 1 0 0 1
1 1 0 0 1 0 1
0 0 0 1 1 0 1
0 1 0 0 0 1 1
1 0 0 1 0 1 1
0 0 1 0 1 1 1
1 1 1 1 1 1 1

Codewords

Center for
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Example – correcting single errors

• Rewrite 𝐻 using column vectors

• Error vector

• Syndrome

• Suppose 𝑒 contains only one binary 1 at the 𝑗-th position, 

i.e., 

• Then

• In order to correct a single error in the codeword, the 

columns of 𝐻 must be all different and nonzero.

• The dimensions of 𝐻 are 𝑛 − 𝑘 × 𝑛, thus the largest 

code length is 𝑛 = 2𝑛−𝑘 − 1. 

• Thus, in this case, 𝑘 = 𝑛 − log2(𝑛 + 1).

Center for
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[7,4,3] Hamming code

Each column is a 

distinct binary vector 

of length 𝑛 − 𝑘 = 3
⇒ Corrects 1 error
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[7,4,3] Hamming code

Perfect Code: The 2𝑘 = 16 Hamming spheres cover all the 2𝑛 = 128 vectors!

𝑛
𝑡
= 7 vectors at Hamming distance 𝑡 =

𝑑−1

2
= 1 from any codeword

Center for
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𝑡 = 1

Hamming spheres
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Poll Question 6

The channel introduces random bit flips but in any 10 consecutive bits, it introduces 

no more than a single bit flip. You choose to use a Hamming code to protect user 

information bits against bit flips in such channel.  The largest number of information 

bits that can be protected by encoding them using the Hamming code is:

A. 0

B. 1

C. 2

D. 3

E. 4

F. 5

G. 9

H. I’m not sure
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Maximum likelihood (ML) decoding

• 𝑑 = 𝑑(𝒙, 𝒚): the Hamming distance between 𝒙 and 𝒚

• For the BSC channel: 

• ML decoding rule:

• If all codewords are equally likely, then maximize 

Encoder DecoderChannel

𝒎 𝒙 𝒚 ෝ𝒙

ෝ𝒎

Center for
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ML decoder on BSC channel

• ML decoding rule:

• For the BSC:

• Hence, ෝ𝒙 is the codeword closest to 𝒚:

negative for 𝛼 < 1/2 independent of 𝑑

Center for
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Example [6,3,3] code
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Quantum
Networks
NSF-ERC

01/05/2023 39



Standard array decoding

000 000    001 011    010 110    100 101    011 101    101 110    110 011    111 000    000

000 001    001 010    010 111    100 100    011 100    101 111    110 010    111 001    001

000 010    001 001    010 100    100 111    011 111    101 100    110 001    111 010    010

000 100    001 111    010 010    100 001    011 001    101 010    110 111    111 100    100

001 000    000 011    011 110    101 101    010 101    100 110    111 011    110 000    011

010 000    011 011    000 110    110 101    001 101    111 110    100 011    101 000    110

100 000    101 011    110 110    000 101    111 101    001 110    010 011    011 000    101

ML decoding:

Center for
Quantum
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Standard array decoding

ML decoding:

Complexity scales exponentially!!

000 000    001 011    010 110    100 101    011 101    101 110    110 011    111 000    000

000 001    001 010    010 111    100 100    011 100    101 111    110 010    111 001    001

000 010    001 001    010 100    100 111    011 111    101 100    110 001    111 010    010

000 100    001 111    010 010    100 001    011 001    101 010    110 111    111 100    100

001 000    000 011    011 110    101 101    010 101    100 110    111 011    110 000    011

010 000    011 011    000 110    110 101 001 101    111 110    100 011    101 000    110

100 000    101 011    110 110    000 101    111 101    001 110    010 011    011 000    101

Center for
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Poll Question 7

The standard array of a linear block code is given below.

The word received from the channel is 𝒚 = [0 1 1 0 0], and the standard array 

decoder is used to estimate the transmitted codeword 𝒙. The estimated codeword is:

A. The standard array decoder cannot correct this error pattern

B. 𝒙 = [0 0 0 0 1]

C. 𝒙 = [0 0 1 0 1]

D. 𝒙 = [0 1 1 0 0]

E. 𝒙 = [0 1 1 0 1]

F. 𝒙 = [0 1 1 0 0]

G. I’m not sure
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Codes on Graphs

and

Iterative Decoding
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Graphical model for a linear block code

VariablesChecks

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

𝑐1 𝑐2 𝑐3

𝑐1: 𝑣1 + 𝑣4 + 𝑣6 + 𝑣7 = 0
𝑐2: 𝑣2 + 𝑣4 + 𝑣5 + 𝑣6 = 0
𝑐3: 𝑣3 + 𝑣5 + 𝑣6 + 𝑣7 = 0

Factor graph

(or)

Tanner graph
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Low-density parity-check (LDPC) codes

• Linear block codes defined by sparse bipartite graphs

• The Tanner graph of an LDPC code 𝐶 is a bipartite graph     

with two sets of nodes: 

– the set of variable nodes

– and the set of check nodes 
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Definitions

• The check nodes (resp. variable nodes) connected to a 

variable node (resp. check node) are its “neighbors”. 

• The set of neighbors of a node     is denoted by

• The degree       of a node    is the size of

Center for
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Definitions

• A vector                                is a codeword if and only if 

for each check node, the modulo two sum of its 

neighbors (i.e., respective bits of the vector) is zero 

• An regular LDPC code has a Tanner graph with    

variable nodes each of degree     and                  check 

nodes each of degree   

• This code has length     and rate 

• The Tanner graph is not uniquely defined by the code

• Each parity-check matrix produces one Tanner graph

Center for
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A regular (𝑛 = 25, 𝛾 = 3, 𝜌 = 5) LDPC code
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Poll Question 8

The parity check matrix that corresponds to the following Tanner graph is

A. 𝐻 =
1 1 1 0 0
0 1 1 1 1
1 1 0 1 1

B. 𝐻 =
1 1 1 0 0
0 0 1 1 1
1 1 0 1 1

C. 𝐻 =
1 1 1 0 0
0 1 0 1 0
1 0 0 0 1

D. 𝐻 =
1 1 1 0 0
0 0 0 1 1
1 1 0 0 1
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Poll Question 9

For the code given by the Tanner graph below, the following statement is false:

A. 𝑛 = 25 and 𝜌 = 5

B. The check degree is three

C. 𝑛 = 25 and the Tanner graph is bipartite

D. It is a regular LDPC code
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Iterative decoders for BEC
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e

e

1-e

1-e

0

1

0

1

E
erased bit

correct bit

Iterative decoding on BEC
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BEC decoding simulation

erased bit

correct bit
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BEC decoding simulation

a check involving a single erased bit

other check

erased bit

correct bit
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BEC simulation - 1

a check satisfied after correction
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BEC simulation - 2

a check satisfied after correction
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BEC simulation - 3

a check satisfied after correction
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BEC simulation - 4

a check satisfied after correction
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BEC simulation - 5

a check satisfied after correction
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BEC simulation - 6

Success !
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Another example BEC simulation - 1
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Another example BEC simulation - 2
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BEC simulation - final

Stuck !
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Decoding failures

• A BEC iterative decoder fails to converge to a codeword 

(correct or wrong) if at any iteration there is no check 

node connected to at most one erased variable node.

• Graph induced by a subset of check nodes each connected 

to at least two erased variables is a stopping set.  
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Gallager A/B algorithm

• The Gallager A/B algorithms are hard decision decoding

algorithms in which all the messages are binary

• number of incoming messages to    which 

are equal to                  . Associated with every decoding 

round    and variable degree     is a threshold        . 

• The Gallager B algorithm is defined as follows:

Gallager A

Center for
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Iterations of Gallager B

error

no error

1

0
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Iterations of Gallager B

1

0
iteration 1 – initialization

all variables send zero 

Center for
Quantum
Networks
NSF-ERC

01/05/2023



68

iteration 1 – the second half

Iterations of Gallager B
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Iterations of Gallager B

Iteration 1 - decison

syndrome mismatch
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Iterations of Gallager B

recall what messages were sent to variable nodes
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Iterations of Gallager B

1

0iteration 2 – first half

variables send the majority 

of incoming messages
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Iterations of Gallager B

iteration 2 – second half
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Iterations of Gallager B

iteration 2 - decision 

syndrome mismatch
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Iterations of Gallager B

messages sent to variable nodes in previous iteration
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Iterations of Gallager B

1

0
iteration 3 – first half

as when we started
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Error floor

FER

SNR

10-1

10-6

10-15

Shannon limit

Sphere packing bound

uncoded

coded

FER

SNR
10-1

10-6

10-

1

5

Shannon limit
uncoded
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Poll Question 10

The Gallager-B decoder on the BSC channel with cross over probability 𝛼 operates by 

sending messages between variable and check node processing units. After receiving 

all three messages from its neighboring checks, assuming that the channel value is 0, 

the variable node processing unit of the variable shown in the picture below will send 

the following message to the check node processing unit of the remaining check:

A.
log

1−𝛼

𝛼

B. log
1−𝛼

𝛼
0

C. 0

D. 1

E. I’m not sure
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Decoding by belief propagation
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Crossword puzzles

• Iterate!

Across:

4  Animal with long ears and a short tail.

10 Person who is in charge of a country.

12 In no place.

Down:

5  Pointer, weapon fired from a bow.

6  Accept as true.

7  A place to shoot at; objective.

4 5 6 7

10

12

14 15

13

16

25

Center for
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Maximum likelihood (ML) decoding

• ML decoding rule:

• Must evaluate posterior for each of the 2𝑘 codewords!

• Make bit-wise decisions instead:

Encoder DecoderChannel

𝒎 𝒙 𝒚 ෝ𝒙

ෝ𝒎

Center for
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Bit-wise maximum likelihood (ML) decoding

Distributivity of addition over multiplication!
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Sum-product algorithm (SPA)

𝜇𝑓→𝑥(𝑥) = ෍

~{𝑥}

𝑓(𝑋) ෑ

ℎ∈𝑛(𝑓)\{𝑥}

𝜇𝑦→𝑓(𝑦)

𝜇𝑥→𝑓(𝑥) = ෑ

ℎ∈𝑛(𝑥)\{𝑓}

𝜇ℎ→𝑥(𝑥)

𝑔𝑖(𝑥𝑖) = ෑ

ℎ∈𝑛(𝑥𝑖)

𝜇ℎ→𝑥𝑖(𝑥𝑖)

x f
( )x f x →

( )f x x →

h1

h2

1
( )h x x →

2
( )h x x →

1 1( )y f y →

2 2( )y f y →

n(x)\{f} n(f)\{x}

y1

y2

Variable node (VN) update:

Check node (CN) update:

Variable node (VN) decision:

Belief propagation (BP)

Center for
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Decoders for channels with soft outputs

• In addition to the channel value, a measure of bit 

reliability is also provided

• Bit log-likelihood ratio (LLR) given 𝑦𝑖:

𝜆(𝑥)

𝜆(𝑥𝑖) = log
𝑃(𝑥𝑖 = 0|𝑦𝑖)

𝑃(𝑥𝑖 = 1|𝑦𝑖)

= log

𝑝(𝑦𝑖|𝑥𝑖 = 0)𝑃(𝑥𝑖 = 0)
𝑝(𝑦𝑖)

𝑝(𝑦𝑖|𝑥𝑖 = 1)𝑃(𝑥𝑖 = 1)
𝑝(𝑦𝑖)

= log
𝑝(𝑦𝑖|𝑥𝑖 = 0)𝑃(𝑥𝑖 = 0)

𝑝(𝑦𝑖|𝑥𝑖 = 1)𝑃(𝑥𝑖 = 1)

= log
𝑝(𝑦𝑖|𝑥𝑖 = 0)

𝑝(𝑦𝑖|𝑥𝑖 = 1)
+ log

𝑃(𝑥𝑖 = 0)

𝑃(𝑥𝑖 = 1)

Encoder DecoderChannel

𝒎 𝒙 𝒚 ෝ𝒙

ෝ𝒎
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Log-likelihood ratio (LLR)

• Without prior knowledge on 𝑥𝑖:

• For AWGN (𝑦𝑖 = 𝑥𝑖 + 𝑛𝑖; 𝑛𝑖~𝑁(0,1)):

• For BSC with parameter 𝛼:  

𝛾𝑖 = 𝜆(𝑥𝑖) = log
𝑝(𝑦𝑖|𝑥𝑖 = 0)

𝑝(𝑦𝑖|𝑥𝑖 = 1)

𝛾𝑖 = log
𝑝(𝑦𝑖|𝑥𝑖 = 0)

𝑝(𝑦𝑖|𝑥𝑖 = 1)
=

1

2𝜎2
−(𝑦𝑖 − 1)2 + (𝑦𝑖 + 1)2 =

𝑦𝑖
2𝜎2

𝛾𝑖 =
log

1 − 𝛼

𝛼
if 𝑦𝑖 = 0

log
1 − 𝛼

𝛼
if 𝑦𝑖 = 1

Center for
Quantum
Networks
NSF-ERC

01/05/2023 84



BP or SPA

• The update rule 

• The result of decoding after    iterations, denoted by       

is determined by the sign of 

Center for
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The min-sum approximation (MSA)

𝜇𝑥→𝑓 = 𝜆𝑥 + ෍

ℎ∈𝑛(𝑥)\{𝑓}

𝜇ℎ→𝑓

𝜇𝑓→𝑥(𝑥) = ෑ

𝑦∈𝑛(𝑓)\{𝑥}

sgn( 𝜇𝑦→𝑓) min
𝑦∈𝑛(𝑓)\{𝑥}

|𝜇𝑦→𝑓|

𝑔𝑖(𝑥𝑖) = 𝜆(𝑥𝑖) + ෍

ℎ∈𝑛(𝑥𝑖)

𝜇ℎ→𝑥𝑖

x f( )x f x →

( )f x x →

h1

h2

1
( )h x x →

2
( )h x x →

1 1( )y f y →

2 2( )y f y →

n(x)\{f} n(f)\{x}

y1

y2
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Poll Question 11

The min-sum decoder operates by sending messages between variable and check 

node processing units. After receiving all three messages from its neighboring checks, 

assuming that the channel value is -3, the variable node processing unit of the variable 

shown in the picture below will send the following message to the check node 

processing unit of the remaining check:

A. sign +3 sign −2 sign(−2)min( +3 , −2 , | − 2| = +2

B. sign +3 sign −2 sign(+2)min( +3 , −2 , | + 2| = −2

C. −1 + sign +3 sign −2 sign(−2)min( +3 , −2 , | − 2| = −3 + 2 = −1

D. −1 + sign +3 sign −2 sign(+2)min( +3 , −2 , | + 2| = −3 − 2 = −5

E. ∞

F. -∞

G. 0
H. -4

I. +4

J. I’m not sure
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Applications of LDPC codes

• Wireless networks, satellite communications, deep-space 

communications, power line communications

• Magnetic hard disk drives, optical communications, flash memories 

• Standards include: 

– Digital video broadcast over satellite (DVB-S2 Standard) and over cable (DVB-

C2 Standard), terrestrial television broadcasting (DVB-T2, DVB-T2-Lite 

Standards) 

– GEO-Mobile Radio (GMR) satellite telephony (GMR-1 Standard), local and 

metropolitan area networks (LAN/MAN) (IEEE 802.11 (WiFi)) 

– Wireless personal area networks (WPAN) (IEEE 802.15.3c (60 GHz PHY)), 

wireless local and metropolitan area networks (WLAN/WMAN) (IEEE 802.16 

(Mobile WiMAX) 

– Near-earth and deep space communications (CCSDS), wire and power line 

communications ( ITU-T G.hn (G.9960)) 

– Ultra-wide band technologies (WiMedia 1.5 UWB)
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Quantum Fundamentals
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Quantum Technologies

IBMGoogle

IonQ Quantinuum
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A qubit is a 2-dimensional vector

• Computational basis states: “Ket 0” , “Ket 1”

• A single-qubit state: 

Bloch Sphere

Visualizing 1 qubit

Dirac notation:

Center for
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Networks
NSF-ERC

01/05/2023 91



Rotating to the conjugate basis

• Conjugate basis states: “Ket +” , “Ket −”

• A single-qubit state: 

Bloch Sphere

Visualizing 1 qubit

Dirac notation:

Center for
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What can you do with a qubit?

• Unitary operations: complex rotations, reversible

• Measurement:

project the state on a basis, 

irreversible

Bloch Sphere

Visualizing 1 qubit

Hermitian transpose

Center for
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Single Qubit: Unitary Operations

Center for
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First quantum operation – Hadamard “gate”

• Switches between computational and conjugate bases

• Matrix representation: 

Take any initial state

𝑍

𝑌

𝑋
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First quantum operation – Hadamard “gate”

• Switches between computational and conjugate bases

• Matrix representation: 

Take any initial state

Rotate 90° by 𝑌 axis

𝑍

𝑌

𝑋
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First quantum operation – Hadamard “gate”

• Switches between computational and conjugate bases

• Matrix representation: 

Take any initial state

Rotate 90° by 𝑌 axis

Then rotate 180° by 𝑋 axis  

𝑍

𝑌

𝑋
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Poll Question 12

If we start with the single qubit state |0⟩ and apply the 𝐻 gate twice, what is the 

resulting state?

A. |+⟩
B. |−⟩
C. |0⟩

D. |1⟩
E. None of the above

F. I’m not sure
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Pauli rotations

• The single-qubit Pauli matrices are:

• These are 𝜋-rotations: 
𝑍

𝑌

𝑋

Global phases don’t matter!
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Pauli rotations

• The single-qubit Pauli matrices are:

• These are 𝜋-rotations: 
𝑍

𝑌

𝑋

Center for
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Pauli rotations

• The single-qubit Pauli matrices are:

• Bit- and Phase-flip operations: 
𝑍

𝑌

𝑋
(Bit-Phase flip)
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Pauli rotations

• The single-qubit Pauli matrices are:

• Bit- and Phase-flip operations: 
𝑍

𝑌

𝑋
(Bit-Phase flip)
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Arbitrary single-qubit gate

• How can we implement an arbitrary unitary operation?

• Classical Computing: NAND and NOR are universal

• Quantum Computing: A finite but universal gate set?
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Universal gate set for one qubit

• The single-qubit Pauli gates are:

• Hadamard gate:

• 𝑇 gate (𝜋/4-rotation):

𝑍

𝑌

𝑋

Center for
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Poll Question 13

The Phase gate is defined by 𝑃 = 𝑍 = 𝑇2. What is the matrix representation of the 

Phase gate?

A. 𝑃 =
1 0
0 −1

B. 𝑃 =
0 1
1 0

C. 𝑃 =
1 0
0 −𝚤

D. 𝑃 =
1 0
0 𝚤

E. None of the above

F. I’m not sure
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Single Qubit: Measurements
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Projective measurement

• Measure     on                               ; “Bra psi” 

1. First, diagonalize the measured “observable” 

2. Define projectors from eigenvectors

3. Possible outcomes “+1”, “−1”

𝑍

𝑌

𝑋
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• Measure     on                               ; “Bra psi” 

1. First, diagonalize the measured “observable” 

2. Define projectors from eigenvectors

3. Possible outcomes “+1”, “−1”

4. Post-measurement state

𝑌

𝑋

Projective measurement
Center for
Quantum
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Information storage in a qubit

Technically, a qubit can store infinite information!

But NO measurement can retrieve it exactly!

This is true INDEPENDENT of the measurement basis
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• Measure     on

1. First, diagonalize the measured “observable” 

2. Define projectors from eigenvectors

3. Possible outcomes “+1”, “−1”

𝑌

𝑋

Projective measurement
Center for
Quantum
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• Measure     on

1. First, diagonalize the measured “observable” 

2. Define projectors from eigenvectors

3. Possible outcomes “+1”, “−1”

4. Post-measurement state

𝑌

Projective measurement
Center for
Quantum
Networks
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• Single-qubit gates

Quantum circuit notation

Universal Set

• Single-qubit measurements
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Poll Question 14

Let the initial state be |0⟩. We apply the 𝐻 gate and then measure in the 𝑍 basis. What 

is the probability of the measurement result −1 and what is the corresponding post-

measurement state?

A.
1

2
and 1

B.
1

2
and |1⟩

C.
1

2
and |0⟩

D.
1

2
and |0⟩

E. I’m not sure
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Multiple Qubits
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Moving beyond one qubit

Controlled-NOT gate: Flip target qubit if control qubit is 1

Control qubit

Target qubit

Input
(𝒂, 𝒃)

Output
(𝒂, 𝒂⊕ 𝒃)

00 00

01 01

10 11

11 10

CX

Universal gates on 𝑛 qubits:
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Kronecker (or Tensor) product

Useful Property:
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Moving beyond one qubit

Controlled-NOT gate: Flip target qubit if control qubit is 1

Control qubit

Target qubit

Input
(𝒂, 𝒃)

Output
(𝒂, 𝒂⊕ 𝒃)

00 00

01 01

10 11

11 10

Center for
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Superposition + Linearity → Entanglement

Superposition

Add a qubit

Linearity

Entanglement!

CANNOT be expressed as a tensor product
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The multi-qubit formalism

• Computational basis states:

• State vector for an 𝑛-qubit state:

• Unitary operations on the state:

• Projective measurement of an “observable” 𝑂:

Center for
Quantum
Networks
NSF-ERC

01/05/2023 119



Poll Question 15

What is the result of 𝑋 ⊗ 𝑍 (|0⟩ ⊗ |1⟩)? 

A. 1 ⊗ |1⟩

B. − 1 ⊗ |0⟩

C. − 0 ⊗ |1⟩

D. − 1 ⊗ |1⟩

E. I’m not sure
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Entanglement and Stabilizers
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Entanglement: Bell Pairs

What happens if we measure the first qubit in the 𝑍 basis?

First qubit collapses to 0/1 & so does the second qubit too!

Bell Basis:
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Stabilizers of Bell Pairs

Bell Basis:

These are ± 1-eigenvalued eigenvectors of 𝑍𝑍, 𝑋𝑋,−𝑌𝑌, 𝐼𝐼:
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Stabilizers of Bell Pairs

Bell Basis:

These are ± 1-eigenvalued eigenvectors of 𝑍𝑍, 𝑋𝑋,−𝑌𝑌, 𝐼𝐼:
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Stabilizer States

Bell Basis:

Stabilizers: 

Elements of the stabilizer must mutually commute to have a 
common eigenbasis, i.e., the same set of eigenvectors 

diagonalize all stabilizer elements. Key fact: 𝑋𝑍 = −𝑍𝑋

(EPR: Einstein-Podolsky-Rosen)

An 𝑛-qubit stabilizer state has 𝑛 Pauli stabilizer generators
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Stabilizer States

Bell Basis:

Stabilizers: 

GHZ Basis:

Stabilizers:

(GHZ: Greenberger-Horne-Zeilinger)

(EPR: Einstein-Podolsky-Rosen)

An 𝑛-qubit stabilizer state has 𝑛 Pauli stabilizer generators

and its variants
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Poll Question 16

What are the stabilizer generators of  
001 +|110⟩

2
? The state must have eigenvalue 

+ 1 for these operators.

A. ⟨𝑍𝑍𝐼, 𝐼𝑍𝑍, 𝑋𝑋𝑋⟩
B. ⟨𝑍𝑍𝐼, 𝐼𝑍𝑍, −𝑋𝑋𝑋⟩
C. ⟨𝑍𝑍𝐼, −𝐼𝑍𝑍, 𝑋𝑋𝑋⟩

D. ⟨−𝑍𝑍𝐼, 𝐼𝑍𝑍, 𝑋𝑋𝑋⟩
E. ⟨𝑍𝑍𝐼, −𝐼𝑍𝑍,−𝑋𝑋𝑋⟩

F. ⟨−𝑍𝑍𝐼, −𝐼𝑍𝑍, 𝑋𝑋𝑋⟩

G. I’m not sure
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The Stabilizer Formalism
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Operations on stabilizer states

Here we can track the state quite easily, with length 4 vectors

This is more complicated to track! With 𝑛 qubits we have length 2𝑛!
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Clifford gates

Unitary operations 𝑈 that map Paulis to Paulis under conjugation

𝑛-qubit Clifford gates:

Universality: “Clifford + 𝑇”

(Clifford group & Pauli group)
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Clifford gates: Pauli tracking
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Pauli measurements

Compare measured operator 𝑍𝐴 with each stabilizer

1. 𝑍𝐴 anticommutes with 𝑋𝐴 𝑋𝐵: replace with ± 𝑍𝐴

2. 𝑍𝐴 commutes with 𝑍𝐴 𝑍𝐵: retain the stabilizer

Output stabilizer: ± 𝑍𝐴 , 𝑍𝐴𝑍𝐵 ≡ ± 𝑍𝐴 , ± 𝑍𝐵 ≡ |00⟩/|11⟩
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Pauli measurements

Compare measured operator 𝑌𝐴 with each stabilizer

1. 𝑌𝐴 anticommutes with 𝑋𝐴 𝑋𝐵: replace with ± 𝑌𝐴

2. 𝑌𝐴 anticommutes with 𝑍𝐴 𝑍𝐵: multiply 𝑍𝐴 𝑍𝐵 with 𝑋𝐴 𝑋𝐵

Output stabilizer: ± 𝑌𝐴 , −𝑌𝐴𝑌𝐵 ≡ ± 𝑌𝐴 , ∓ 𝑌𝐵
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Gottesman-Knill theorem

Clifford gates and Pauli measurements on input 

stabilizer states can be efficiently simulated 

classically, by simply tracking the stabilizers of the 

input state through the circuit!

Stabilizer Circuits: Cliffords + Pauli measurements
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Poll Question 17

What are the stabilizers for the output of the following 

circuit if the measurement result is +1?

A. −𝑋𝑋, 𝑋𝐼 = ⟨−𝐼𝑋, 𝑋𝐼⟩

B. −𝑋𝑋,−𝑋𝐼 = ⟨𝐼𝑋, −𝑋𝐼⟩

C. −𝑋𝑋, 𝑍𝑍 = ⟨−𝑋𝑋, 𝑌𝑌⟩

D. 𝑋𝑋,−𝑋𝐼 = ⟨−𝐼𝑋, −𝑋𝐼⟩

E. I’m not sure
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Protecting information with entanglement
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Pauli errors (and beyond)

• Recall the 𝑛-qubit Pauli group:

• Each element can also be thought of as an error operator, 

since Pauli matrices form an orthogonal basis for all 

matrices under the trace inner product:

• Key Result: if Pauli errors on 𝑡 qubits can be corrected, 

then any linear combination of them can also be corrected

• Goal: design quantum codes that correct Pauli errors
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Stabilizer States

Bell Basis:

Stabilizers: 

GHZ Basis:

Stabilizers:

(GHZ: Greenberger-Horne-Zeilinger)

(EPR: Einstein-Podolsky-Rosen)

An 𝑛-qubit stabilizer state has 𝑛 Pauli stabilizer generators

and its variants
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The three-qubit code

GHZ when 𝛼 = 𝛽 =
1

√2

From GHZ stabilizers ⟨𝑍𝑍𝐼, 𝐼𝑍𝑍, 𝑋𝑋𝑋⟩ drop 𝑋𝑋𝑋 to create a logical qubit!

Stabilizers: ⟨𝑍𝑍𝐼, 𝐼𝑍𝑍⟩ (they commute), is a +1-eigenvector for all 𝛼, 𝛽
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Syndrome measurement

Suppose that after encoding the logical qubit the error 𝑋1 acts on the state

Measure the stabilizer generators 𝑆1 = 𝑍𝑍𝐼 and 𝑆2 = 𝐼𝑍𝑍:
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Syndrome measurement

Measure the stabilizer generators 𝑆1 = 𝑍𝑍𝐼 and 𝑆2 = 𝐼𝑍𝑍:

The error 𝑋 propagates through the CNOT and flips the measurement

Hence, the measurement results in −1 whenever there are an 
odd number of 𝑋’s on the ancilla (through the CNOT gates), i.e., 

when the error anticommutes with the stabilizer 𝑺𝒊

Center for
Quantum
Networks
NSF-ERC

01/05/2023 151



Poll Question 18

Given the stabilizers ⟨𝑆1 = 𝑍𝑍𝐼, 𝑆2 = 𝐼𝑍𝑍⟩ of the code, what is the syndrome for the 

error 𝐼𝑋𝐼?

A. (+1, +1)
B. (+1, −1)
C. (−1, +1)

D. (−1, −1)

E. I’m not sure
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Binary representation

Map an 𝑛-qubit Hermitian Pauli matrix to a pair of binary vectors:

Example for 𝑛 = 3: 𝑋 ⊗ 𝑍⊗ 𝑌

[1 0 1]

[0 1 0]

𝒂 =

𝒃 =

𝐸(𝒂, 𝒃)

(𝑋 component)

(𝑍 component)

How to check if 𝐸 𝒂, 𝒃 = 𝑋⊗ 𝑍⊗ 𝑌 and 𝐸 𝒄, 𝒅 = 𝑍 ⊗ 𝑍⊗𝑋 commute?

Compare operators on each qubit: 𝑋⊗ 𝑍⊗ 𝑌 ↦ ( 1 0 1 , 0 1 0 )

𝑍 ⊗ 𝑍⊗𝑋 ↦ ( 0 0 1 , 1 1 0 )

Symplectic inner product: 𝒂, 𝒃 , 𝒄, 𝒅 sym ≔ 𝒂𝒅𝑇 + 𝒃𝒄𝑇 (modulo 2) 

= ቊ
0 iff they commute,
1 iff they anticommute
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Binary representation: errors

Stabilizers (𝑛 = 3): 𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

(𝑋 component)

(𝑍 component)

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

Let the error operator be 𝑋⊗ 𝐼 ⊗ 𝐼 ≡ 𝑋𝐼𝐼 = 𝐸 𝒄, 𝒅 = 𝐸( 1 0 0 , 0 0 0 )

Symplectic inner product: 𝒂, 𝒃 , 𝒄, 𝒅 sym ≔ 𝒂𝒅𝑇 + 𝒃𝒄𝑇 (modulo 2)

𝒂𝟐 =

𝒃𝟐 =

Syndrome =
𝒂𝟏, 𝒃𝟏 , 𝒄, 𝒅 sym

𝒂2, 𝒃𝟐 , 𝒄, 𝒅 sym
=

1
0

𝑎1𝑑
𝑇 + 𝑏1𝑐

𝑇 = 0 0 0 0 0 0 𝑇 + 1 1 0 1 0 0 𝑇 = 0 + 1 = 1 (mod 2)
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Quantum Parity-Check Matrices

Stabilizers (𝑛 = 3): 𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

(𝑋 component)

(𝑍 component)

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

Syndrome =
𝒂𝟏, 𝒃𝟏 , 𝒄, 𝒅 sym

𝒂2, 𝒃𝟐 , 𝒄, 𝒅 sym
= 𝐻𝑎𝑑

𝑇 +𝐻𝑏𝑐
𝑇

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Symplectic inner product: 𝒂, 𝒃 , 𝒄, 𝒅 sym ≔ 𝒂𝒅𝑇 + 𝒃𝒄𝑇 (modulo 2)
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Minimum Distance and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

Syndrome =
𝒂𝟏, 𝒃𝟏 , 𝒄, 𝒅 sym

𝒂2, 𝒃𝟐 , 𝒄, 𝒅 sym
= 𝐻𝑎𝑑

𝑇 +𝐻𝑏𝑐
𝑇

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

What are the “codewords” of this quantum code?

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators
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Poll Question 19

Given the parity-check matrix 𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

of the code, what is the 

binary syndrome for the error 𝑋𝑋𝑋?

A. 0,0 𝑇

B. 0,1 𝑇

C. 1,0 𝑇

D. 1,1 𝑇

E. I’m not sure
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Stabilizers and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators
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Stabilizers and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators
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Stabilizers and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators
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Stabilizers and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators
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Stabilizers and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators

[ 3,1,1 ] Code
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Stabilizers and Logical Operators

𝑍 ⊗ 𝑍⊗ 𝐼

[0 0 0]

[1 1 0]

𝒂𝟏 =

𝒃𝟏 =

𝐼 ⊗ 𝑍 ⊗ 𝑍

[0 0 0]

[0 1 1]

𝒂𝟐 =

𝒃𝟐 =

𝐻 =
0 0 0 1 1 0
0 0 0 0 1 1

= 𝐻𝑎 𝐻𝑏 ; 𝑯𝒂𝑯𝒃
𝑻 +𝑯𝒃𝑯𝒂

𝑻 = 𝟎

Generated by ത𝑋 = [1 1 1 , 0 0 0] and ҧ𝑍 = [0 0 0 , 1 0 0]

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators

Center for
Quantum
Networks
NSF-ERC

[ 3,1,1 ] Code

01/05/2023 163



The Steane code

[7,4,3] Hamming Code:

[ 7,1,3 ] Steane Code:

Logical Operators:
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Standard array decoding

ML decoding:

Complexity scales exponentially!!

000 000    001 011    010 110    100 101    011 101    101 110    110 011    111 000    000

000 001    001 010    010 111    100 100    011 100    101 111    110 010    111 001    001

000 010    001 001    010 100    100 111    011 111    101 100    110 001    111 010    010

000 100    001 111    010 010    100 001    011 001    101 010    110 111    111 100    100

001 000    000 011    011 110    101 101    010 101    100 110    111 011    110 000    011

010 000    011 011    000 110    110 101 001 101    111 110    100 011    101 000    110

100 000    101 011    110 110    000 101    111 101    001 110    010 011    011 000    101

Complexity scales exponentially!!
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The Steane code: correcting errors

[ 7,1,3 ] Steane Code:

Syndrome =

𝒂𝟏, 𝒃𝟏 , 𝒄, 𝒅 sym

⋮
𝒂14, 𝒃𝟏𝟒 , 𝒄, 𝒅 sym

= 𝐻𝑎𝑑
𝑇 +𝐻𝑏𝑐

𝑇

Syndrome decoding: Given the measured syndrome, determine 
the most likely error [𝑐, 𝑑] that matches the measured syndrome

Complexity scales exponentially!!
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Poll Question 20

Given the Steane code parity-check matrix 𝐻𝑆 = 𝐻𝑎 𝐻𝑏] =
𝐻 0
0 𝐻

with 

𝐻 =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

,

what is the most likely error pattern corresponding to the syndrome 0,1,0,0,0,0 𝑇? 

Assume that the channel is memoryless, so it applies independent Pauli errors.

A. 0 0 0 0 0 0 0 1 0 0 1 0 0 0]

B. 1 0 0 1 0 0 0 0 0 0 0 0 0 0]

C. 0 0 0 0 0 0 0 0 0 0 0 0 1 1]

D. 0 0 0 0 0 0 0 0 1 0 0 0 0 0]

E. 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

F. I’m not sure

01/05/2023 167



CSS (Calderbank-Shor-Steane) Codes

• Consider two classical codes 𝐶𝑋 and 𝐶𝑍 whose parity-

check matrices 𝐻𝑋 and 𝐻𝑍 satisfy 𝐻𝑋𝐻𝑍
𝑇 = 0

• Define the CSS (stabilizer) code by 𝐻CSS =
𝐻𝑋 0
0 𝐻𝑍

• Logical operators [𝑐, 𝑑] defined by 𝐻𝑋𝑑
𝑇 + 𝐻𝑍𝑐

𝑇 = 0

• Error 𝑒𝑋, 𝑒𝑍 ⇒ syndrome is 𝑠 = 𝐻𝑋𝑒𝑍
𝑇 +𝐻𝑍𝑒𝑋

𝑇 (mod 2)

• [ 𝑛, 𝑘, 𝑑 ] = [ 𝑛, 𝑘𝑋 + 𝑘𝑍 − 𝑛,𝑤min 𝐶𝑋\C𝑍
⊥ ∪ 𝐶𝑍\C𝑋

⊥ ]
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Surface code
Center for
Quantum
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- plaquette checks (𝐻𝑍)
- vertex checks (𝐻𝑋) Wang et al. http://arxiv.org/abs/0905.0531

- Logical 𝑍

- Logical 𝑋

[[ 𝑂(𝐿2), 1, 𝐿 ]]

ത𝑋

ҧ𝑍
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Poll Question 21

Consider the following statements and answer if they are true or false:

1. Errors that produce a zero syndrome must be stabilizers or logical operators

2. The surface code stabilizer generators each involve either 3 or 4 qubits

A. 1 is True, 2 is False

B. 1 is False, 2 is True

C. 1 is True, 2 is True

D. 1 is False, 2 is False

E. I’m not sure
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Manipulating encoded information

Noisy

Logical operation 

Physical operation

Fault-tolerant

QECC

Encode

QECC

Decode

Translate

(Synthesize)

QECC: Quantum Error Correcting Code

𝑘 qubits

𝑛 qubits
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Universal fault-tolerance

Universal gates on 𝑘 qubits:

Noisy

Logical operation 

Physical operation

Fault-tolerant

QECC

Encode

QECC

Decode

Translate

(Synthesize)

𝑛 qubits

𝑘 qubits
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Quantum LDPC codes

• Consider two classical LDPC codes 𝐶𝑋 and 𝐶𝑍 whose 

parity-check matrices 𝐻𝑋 and 𝐻𝑍 satisfy 𝐻𝑋𝐻𝑍
𝑇 = 0

• Define the CSS QLDPC code by 𝐻QLDPC =
𝐻𝑋 0
0 𝐻𝑍

• Several QLDPC code families exist:

– Hypergraph Product codes, e.g., the surface code

– Bicycle and Generalized Bicycle codes

– Homological Product codes

– Lifted Product codes

– Quantum Tanner codes
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Syndrome-based iterative decoding

𝜇𝑓→𝑥(𝑥) = ෍

~{𝑥}

𝑓(𝑋) ෑ

ℎ∈𝑛(𝑓)\{𝑥}

𝜇𝑦→𝑓(𝑦)

𝜇𝑥→𝑓(𝑥) = ෑ

ℎ∈𝑛(𝑥)\{𝑓}

𝜇ℎ→𝑥(𝑥)

𝑔𝑖(𝑥𝑖) = ෑ

ℎ∈𝑛(𝑥𝑖)

𝜇ℎ→𝑥𝑖(𝑥𝑖)

x f
( )x f x →

( )f x x →

h1

h2

1
( )h x x →

2
( )h x x →

1 1( )y f y →

2 2( )y f y →

n(x)\{f} n(f)\{x}

y1

y2

Variable node (VN) update:

Check node (CN) update:

Variable node (VN) decision:

Belief propagation (BP)
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Poll Question 22

Consider a CSS QLDPC code constructed from classical codes 𝐶𝑋 and 𝐶𝑍. Then which of 

the following is false?

A. 𝐻𝑋 and 𝐻𝑍 are orthogonal

B. 𝐻𝑋 and 𝐻𝑍 are sparse, i.e., have very few 1s

C. The code is a stabilizer code

D. Any stabilizer code is a CSS code

E. Universal computation requires fault-tolerant realizations of 𝐻, 𝑇, 𝐶𝑁𝑂𝑇 on the 

logical qubits

F. I’m not sure
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Error Correction: Classical vs Quantum

• Classical: Decode based on received vector

Quantum: Decode based only on measured syndrome

• Classical: Any sparse parity-check matrix gives LDPC

Quantum: Need two sparse matrices that are orthogonal

• Classical: Only the zero vector causes trivial syndrome

Quantum: All stabilizers have zero syndrome (degeneracy)

• Classical: Hardware noise quite low, mainly channel noise

Quantum: Everything noisy – decoding + logical gates
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Challenges in QEC

• How to fully leverage degeneracy in QLDPC decoders?

• Local iterative algorithms that correct many errors?

• Can we physically realize good QLDPC codes in 

hardware despite their many long-range connections?

• Universal fault-tolerance on good QLDPC codes?

• … and many more!

Center for
Quantum
Networks
NSF-ERC
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Course Evaluation Survey

We value your feedback on all aspects 
of this short course. Please go to the 
link provided in the Zoom Chat or in the 
email you will soon receive to give your 
opinions of what worked and what could 
be improved. 
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