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I. QUANTUM CHANNELS: GENERAL
DESCRIPTION

Here, we discuss generic features of quantum evolu-
tion in terms of quantum channels and their properties.
In later sections, we provide physical examples of quan-
tum channels relevant for quantum information process-
ing with photons.

A. Choi-Kraus representation

Consider a (finite or infinite dimensional) Hilbert space
H and density matrices ρ, σ ∈ H . We generally de-
fine a quantum channel N : ρ → σ as a linear, com-
pletely positive, and trace preserving (CPTP) map. The
map must be linear since quantum theory is linear, while
the CPTP condition must hold because a quantum chan-
nel must ‘map quantum states to quantum states’—i.e.,
σ = N (ρ) ≥ 0 if ρ ≥ 0 and Tr{N (ρ)} = Tr{ρ}. From
linearity and the CPTP condition, one can prove the fol-
lowing useful theorem for any quantum channel N (see
Section 4.4 of the publicly available book [1] for an ex-
plicit proof):

Theorem 1 (Choi-Kraus) A map N is a CPTP map
iff it admits a Choi-Kraus (or operator sum) representa-
tion as

N (ρ) =
∑
k

L̂kρL̂
†
k, (1)

where
∑

k L̂
†
kL̂k = Î.

The operators {L̂k} are known as the Kraus operators for
the quantum channel N . Note that a quantum channel
generalizes evolution of a quantum state beyond typical
unitary evolution. Indeed, unitary evolution is a special
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case of the quantum channel description above, in which
case a unitary quantum channel U(ρ) = ÛρÛ† has only
one Kraus operator Û which satisfies Û†Û = Î.

Exercise 1 (Kraus ops: Erasure) Consider a two-
level quantum system (a qubit) described by the quantum
state Ψ ∈ H , where H is the qubit Hilbert space, and
consider the “erasure state” |ε⟩ which lies outside of H
(i.e., ⟨ε|Ψ|ε⟩ = 0∀Ψ ∈ H ). An erasure channel Lε acts
on the qubit as,

Lε(Ψ) = (1− ε)Ψ + ε |ε⟩⟨ε| ,

where 0 ≤ ε ≤ 1 is the erasure probability. Given an
orthonormal qubit basis {|0⟩ , |1⟩}, write the Kraus oper-
ators for the erasure channel in terms of the qubit basis
and the erasure state.

Exercise 2 (Kraus ops: Depolarizing) Given a
qubit described by the state Ψ, a depolarizing channel ∆p

has the following action,

∆p(Ψ) = (1− p)Ψ + pÎ/2,

where Î/2 is the maximally mixed state and 0 ≤ p ≤
4/3. What are the Kraus operators for the depolarizing
channel? [Hint: first show that, for any qubit Ψ,

1

4

(
Ψ+ X̂ΨX̂ + ŶΨŶ + ẐΨẐ

)
= Î/2,

where X̂, Ŷ , Ẑ are the Pauli matrices. This is known as
a “Pauli twirl”.]

Exercise 3 (Concatenated erasures) Consider two
erasure channels Lε1 and Lε2 (see Exercise 1 for action of
erasure channel on a qubit). Show that the concatenation
of the two erasure channels is another erasure channel,
Lε12 = Lε2 ◦ Lε1 . Determine the erasure probability ε12.

B. Church of the Larger Hilbert Space

On the one hand, the postulates of quantum mechanics
are written in terms of pure states |Ψ⟩, which are com-
plex vectors in a Hilbert space H , and unitary operators
which map pure states to pure states, i.e. Û : |Ψ⟩ → |Ψ′⟩.
On the other hand, in the previous section, we discussed
things in terms of a density matrix ρ, which is a con-
vex (i.e., probabilistic) combination of pure states, and a
quantum channel N , which is generally non-unitary. We
can reconcile these descriptions by ‘going to the Church
of the Larger Hilbert Space’, in which case we describe
a mixed quantum state by a pure quantum state in a
larger Hilbert space and a quantum channel by a unitary
evolution on a larger, joint system (formally known as
Stinespring’s dilation theorem). Details regarding such a
reconciliation in terms of Kraus operators are discussed
below.

1. Purification

Given a mixed quantum state ρS ∈ HS , where S
denotes the ‘system’, we can introduce an environment
Hilbert space HE and formally construct a purification
|Ψ⟩SE ∈ HS ⊗ HE of ρS such that,

ρS = TrE
{
|Ψ⟩⟨Ψ|SE

}
, (2)

where TrE{·} denotes a partial trace over the environ-
ment degrees of freedom.

Explicitly, given the singular value decomposition,
ρS =

∑
i λi |i⟩⟨i|S—where λi ∈ R,

∑
i λi = 1, and

⟨i|j⟩ = δij—a purification can be given as,

|Ψ⟩SE =
∑
i

√
λi |i, i⟩SE , (3)

such that Eq. (2) is satisfied by construction. In this
extended setting, the coefficients {

√
λi} are known as

Schmidt coefficients, and the system S and environment
E are said to be entangled iff there is more than one
Schmidt coefficient. Furthermore, the purification above
is not unique, since unitary operations acting on the en-
vironment Hilbert space lead to the same system state
ρS , i.e. ÎS ⊗ ÛE |Ψ⟩SE =⇒ ρS .

2. Unitary and isometric extensions

As mentioned previously, we can reconcile quantum
evolution via a quantum channel with unitary evolution
by introducing a unitary interaction between a system
S and an environment E, which is known as a unitary
extension of the quantum channel.

Let N be a quantum channel with Kraus operators
{L̂k}. Now, consider a system described by the density
matrix ρS and an environment initially in the pure state
σE = |e0⟩⟨e0|E , where ⟨e0|e0⟩ = 1. The initial state of
the environment can always be taken as pure since, if it
were a mixed state, we could otherwise purify the state
by introducing a larger environment Hilbert space. Then,
given a set of basis vectors {|ek⟩E} and a joint unitary
interaction ÛSE , we can explicitly construct the Kraus
operators {L̂k} via,

N (ρS) = TrE

{
ÛSE(ρS ⊗ σE)Û

†
SE

}
=
∑
k

⟨ek|E
(
ÛSE(ρS ⊗ |e0⟩⟨e0|E)Û

†
SE

)
|ek⟩E

=
∑
k

(
⟨ek| ÛSE |e0⟩

)
ρS

(
⟨e0| Û†

SE |ek⟩
)

=
∑
k

L̂kρSL̂
†
k, (4)

where L̂k = ⟨ek| ÛSE |e0⟩ are the Kraus operators that
act on the system Hilbert space HS . By the completeness
relation

∑
k |ek⟩⟨ek|E = ÎE and the normality condition
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⟨e0|e0⟩ = 1, the Kraus operators automatically satisfy∑
k L̂

†
kL̂k = ÎS . Observe that the Kraus decomposition

for the channel is not unique, as an arbitrary unitary
transformation on the environment basis vectors lead to
a different set of Kraus operators but describe the same
channel.

Another useful representation is an isometric exten-
sion of a quantum channel. An isometry is a map
V̂S→SE : HS → HS ⊗ HE such that V̂ †

S→SE V̂S→SE = ÎS
and V̂S→SE V̂

†
S→SE = Π̂SE , where Π̂SE is a projection

onto the joint Hilbert space HS ⊗HE (i.e., Π̂SE satisfies
Π̂2

SE = Π̂SE). Given a quantum channel N with Kraus
operators {L̂k} and environment basis vectors {|ek⟩E},
one can construct an isometry

V̂S→SE =
∑
k

L̂k ⊗ |ek⟩ , (5)

such that

N (ρS) = TrE

{
V̂S→SEρS V̂

†
S→SE

}
=
∑
j,k

L̂kρSL̂
†
j ⟨ek|ej⟩︸ ︷︷ ︸

=δkj

=
∑
k

L̂kρSL̂
†
k. (6)

From the orthonormality of the environment basis vec-
tors and the property

∑
k L̂

†
kL̂k = Î, one can indeed

show that the isometric extension given in Eq. (5) sat-
isfies V̂ †

S→SE V̂S→SE = ÎS and, thus, that V̂S→SE V̂
†
S→SE

is a projector onto HS ⊗ HE . Similar to the unitary
extension discussed previously, all isometries are equiv-
alent up to unitary transformations on the environment
Hilbert space. The usefulness of the isometry is that the
initial state of the environment need not be specified.

Exercise 4 (Isometric erasure) Consider the erasure
channel Lε. Provide an isometric extension of the era-
sure channel in terms of the qubit basis {|0⟩ , |1⟩}, the
erasure state |ε⟩, and the erasure probability ε. [Hint:
use the Kraus operators from Exercise 1 and Eq. (5).]

II. GAUSSIAN BOSONIC CHANNELS

The discussion about quantum channels in the previ-
ous section was quite general, with not much reference
to a particular quantum system. From hereon though,
we shall focus on a one-dimensional quantum harmonic
oscillator (e.g., photons with one degree of freedom). We
describe the single bosonic mode by its annihilation and
creation operators â and â†, such that

[
â, â†

]
= 1. Nec-

essary tidbits on the quantum harmonic oscillator can
be found in Appendix A. Below, we define some typical
Gaussian bosonic noise channels and then consider their
properties in following subsections.

Definition 1 (Displacement channel) Consider the
displacement operator D̂(α) = exp

(
αâ† − α∗â

)
, where

α ∈ C. It acts on the annihilation operator â as

D̂†(α)âD̂(α) = â+ α. (7)

We define the unitary displacement channel, Dα, as a
unitary conjugation by D̂(α). In other words, for a quan-
tum state Ψ, Dα(Ψ) = D̂(α)ΨD̂†(α), which leads to
Eq. (7) in the Heisenberg picture.

Definition 2 (Thermal loss channel) Define a ther-
mal loss channel Lη,NB

by the input-output relation for
the annihilation operators,

â′ =
√
ηâ+

√
1− ηê, (8)

where
〈
ê†ê
〉
= NB is the mean number of bath quanta and

0 ≤ η ≤ 1 is the transmittance. The output mean photon
number is

〈
â′†â′

〉
= η

〈
â†â
〉
+ (1 − η)NB. Observe that,

for NB = 0 (often called a pure-loss channel),
〈
â′†â′

〉
=

η
〈
â†â
〉
<
〈
â†â
〉
; i.e., photons have been lost.

Definition 3 (Thermal amplifier channel) Define a
thermal amplifier channel AG,NB

â′ =
√
Gâ+

√
G− 1ê†, (9)

where
〈
ê†ê
〉
= NB. The output mean photon number〈

â′†â′
〉

= G
〈
â†â
〉
+ (G − 1)(NB + 1). Observe that〈

â′†â′
〉
≥
〈
â†â
〉
; thus the intensity has been amplified.

For NB = 0, the channel is often referred to as a quan-
tum limited amplifier.

Definition 4 (AGN channel) Define an additive
Gaussian noise (AGN) channel formally via

NNB
= lim

η→1
Lη,NB/(1−η). (10)

The output mean photon number is
〈
â′†â′

〉
=
〈
â†â
〉
+NB.

Equivalently, one can define an AGN channel via Gaus-
sian random displacements Dξ, where ξ ∼ NC(0, NB) and
NC(0, NB) is a (complex) normal distribution with vari-
ance NB; in other words,

NNB
(Ψ) =

1

NBπ

ˆ
ξ∈C

d2ξ e
− |ξ|2

NB Dξ (Ψ) . (11)

Exercise 5 (AGN quanta) Using Eq. (11), for any
state Ψ, explicitly show that,

Tr{n̂NNB
(Ψ)} = Tr{Ψ}+NB , (12)

where n̂ = â†â.

A. Concatenated thermal loss

We consider the resulting channel from applying two
thermal loss channels in succession. First apply Lη1,N1

such that,

â′ =
√
η1â+

√
1− η1ê1. (13)
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Then apply Lη2,N2
such that

â′′ =
√
η2â

′ +
√
1− η2ê2

=
√
η2(

√
η1â+

√
1− η1ê1) +

√
1− η2ê2

=
√
η1η2â+

√
1− η1η2ê3, (14)

where

ê3 =

√
η2(1− η1)ê1 +

√
1− η2ê2√

1− η1η2
(15)

and
[
ê3, ê

†
3

]
= 1. From here, it follows that

N3 ≡
〈
ê†3ê3

〉
=

η2(1− η1)N1 + (1− η2)N2

1− η1η2
(16)

We thus conclude that,

Lη2,N2
◦ Lη1,N1

= Lη1η2,N3
. (17)

B. Loss then amplifier

Some interesting things begin to happen once we start
mixing concatenating different channels. Here we con-
sider the channel resulting from amplification after loss,
which is a standard setup for combat attenuation in, e.g.,
optical fibers.

First apply the thermal loss channel Lη,N1
such that

â′ =
√
ηâ+

√
1− ηê1. (18)

Subsequently applying the thermal amplifier channel
AG,N2 , we have

â′′ =
√
Gâ′ +

√
G− 1ê2

†

=
√
G(

√
ηâ+

√
1− ηê1) +

√
G− 1ê2

†

=
√
Gηâ+

(√
G
√
1− ηê1 +

√
G− 1ê2

†
)
. (19)

Interestingly, the form of the resulting channel depends
on the parameter values of G and η.

1. Gη < 1: Thermal-loss

For Gη < 1, the resulting channel is a thermal loss
channel. In particular, we rewrite expression (19) as

â′′ =
√
Gηâ+

√
1−Gηê3. (20)

with

ê3 =

(√
G(1− η)

1−Gη
ê1 +

√
G− 1

1−Gη
ê2

†

)
. (21)

One can check that [ê3, ê3
†] = 1 and

N3 ≡
〈
ê3

†ê3

〉
=

G(1− η)

1−Gη
N1 +

G− 1

1−Gη
(N2 + 1). (22)

For Gη < 1, the channel resulting from the composition
(thermal loss then thermal amplifier) is thus a thermal
loss channel, i.e.

AG,N2
◦ Lη,N1

= LGη,N3
(Gη < 1). (23)

2. Gη = 1: AGN

In this case, we can take the limit of the composition
above, i.e.

NB = lim
ηG→1

(1−Gη)N3 = (G− 1)(N1 +N2 + 1). (24)

Therefore,

AG,N2
◦ Lη,N1

= NNB
(Gη = 1). (25)

3. Gη > 1: Thermal amplifier

For Gη > 1, the resulting channel is a thermal amplifier
channel. In particular, we rewrite expression (19) as

â′′ =
√
Gηâ+

√
Gη − 1ê†4, (26)

with

ê4 =

(√
G(1− η)

Gη − 1
ê†1 +

√
G− 1

Gη − 1
ê2

)
. (27)

One can check that [ê4, ê
†
4] = 1 and

N4 ≡
〈
ê†4ê4

〉
=

G(1− η)

Gη − 1
(N1 + 1) +

G− 1

Gη − 1
N2. (28)

For Gη > 1, the channel resulting from the composition
(thermal loss then thermal amplifier) is thus a thermal
amplifier channel, i.e.

AG,N2
◦ Lη,N1

= AGη,N4
, for Gη > 1. (29)

C. Amplifier then loss

Derivations and results are quite similar for this case.
However, one interesting result is that, for Gη = 1, am-
plification prior to loss introduces less noise than ampli-
fication after loss.

Exercise 6 (Amplifier then loss is less noisy)
Consider a thermal loss channel Lη,N2

and a thermal
amplifier channel AG,N1

. For Gη = 1, show that
amplification prior to loss introduces less noise than
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amplification after loss. [Hint: One must first show that,
for Gη = 1, amplification before loss results in an AGN
channel similar to Eq. (25), i.e.

Lη,N2 ◦ AG,N1 = NNB1
(Gη = 1). (30)

Find NB1
. Then, given AG,N1

◦ Lη,N2
= NNB2

, show
NB1

< NB2
, where NB2

can be taken from Eq. (24).]

D. Unitary extensions of Gaussian channels

It turns out that there exists very simple classification
schemes for every possible single-mode Gaussian bosonic
channel [2, 3] with simple corresponding unitary exten-
sions, however we will not go into such technical details
in this course. Instead, we provide heuristic explanations
for the thermal loss channel and thermal amplifier chan-
nel.

The thermal loss channel Lη,NB
and thermal ampli-

fier channel AG,NB
are non-unitary channels. However,

we can provide an unitary extension of such channels by
introducing an ancillary mode ê that occupies a thermal
state and interacts with the system mode by a two-mode,
Gaussian unitary operation ÛSE .

1. Loss via beamsplitter

The unitary extension of a loss channel Lη,NB
is a two-

mode beamsplitter with transmittance η. The beamsplit-
ter unitary is,

ÛSE(θ) = exp
[
iθ(â†ê− âê†

]
, (31)

where the beamsplitter angle θ is related to the trans-
mittance η via η = cos2 θ. The system mode â and en-
vironment mode ê evolve under the beamsplitter unitary
of Eq. (31) via

â′ ≡ Û†
SE(θ)âÛSE(θ) = cos θ â+ sin θ ê, (32)

ê′ ≡ Û†
SE(θ)êÛSE(θ) = cos θ ê− sin θ â. (33)

Exercise 7 (Beamsplitter: Output quanta)
Assume that the environment mode ê is a (Gaussian)
thermal state with zero mean, ⟨ê⟩ = 0, and NB ≥ 0
number of quanta,

〈
ê†ê
〉
= NB. Using Eq. (32), show

that
〈
â′ †â′

〉
= η

〈
â†â
〉
+ (1− η)NB, where η = cos2 θ.

The pure-loss channel Lη,0 corresponds to the special
case that the environment mode ê occupies a vacuum
state with zero quanta rather than a thermal state of NB

quanta. For optical frequencies, the pure-loss channel
is often a good approximation to use in place a general
thermal loss channel.

2. Amplification via two-mode squeezing

The unitary extension of a thermal amplifier channel
AG,NB

is a two-mode squeezer. The two-mode squeezing
unitary is,

ÛSE(r) = exp
[
r(âê− â†ê†)

]
, (34)

where the squeezing strength r is related to the gain G of
the amplifier channel via G = cosh2 r. The system mode
â and environment mode ê evolve under the two-mode
squeezing unitary of Eq. (34) via

â′ ≡ Û†
SE(r)âÛSE(r) = cosh r â+ sinh r ê†, (35)

ê′ ≡ Û†
SE(r)êÛSE(r) = cosh r ê+ sinh r â†, (36)

where cosh2 r− sinh2 r = 1. Observe that the total num-
ber of quanta N̂ = â†â + ê†ê is not conserved under a
two-mode squeezing operation. One can see this imme-
diately by noting the presence of creation operators in
the output relations for the annihilation operators above.
Similarly, one can show that the output quanta N̂ ′ does
not equal the input quanta N̂ , i.e. N̂ ′ ̸= N̂ .

Exercise 8 (Squeezing: Output quanta) Assume
that the environment mode ê is a (Gaussian) thermal
state with zero mean, ⟨ê⟩ = 0, and NB ≥ 0 number
of quanta,

〈
ê†ê
〉

= NB. Using Eq. (35), show that〈
â′ †â′

〉
= G

〈
â†â
〉
+(G−1)(NB +1), where G = cosh2 r.

Thus, even for vacuum inputs
〈
â†â
〉
=
〈
ê†ê
〉
= 0, there

are G− 1 quanta in the output.

A thermal amplifier channel with zero background
quanta AG,0 is often called a quantum-limited amplifier,
which corresponds to the special case that the environ-
ment mode ê occupies a vacuum state. Quantum-limited
amplifiers are desirable devices that can be used to (nois-
ily) amplify both quadratures of very weak signals.

III. SINGLE-PHOTON ENCODINGS

Here, we discuss single-photon encodings via “dual rail”
qubits and their relevance in quantum information pro-
cessing. For further details, refer to, e.g., Chapter 5 of
Ref. [4] and Refs. [5, 6].

A. Dual-rail qubits

Photons have many degrees of freedom (dofs)—
polarization, angular momentum, spatial, temporal,
etc.—with varying properties and levels of control. Some
degrees of freedom are finite dimensional (e.g., a photon
only has two modes of polarization), while others are in-
finite dimensional and either continuous (like spatial or
temporal) or discrete (like angular momentum).

We will encode into only one dof, which we label with
the set of mode operators {âk}. The index k refers to the
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mode of the dof, e.g. k ∈ {H,V } for horizontally (H) or
vertically (V ) polarized light. Though k can generally
run over an infinite set (such as angular momentum),
for dual-rail photonic qubits, we restrict to a two mode
subspace, generically labelled k ∈ {1, 2}.

We define a logical qubit as a state in the two-mode,
single photon subspace with logical states given by

|0⟩ ≡ â†1 |vac⟩ , |1⟩ ≡ â†2 |vac⟩ , (37)

such that Ψ ∈ span{|0⟩ , |1⟩} for a general dual-rail qubit
Ψ. [Note that, technically, |vac⟩ = |vac⟩1 ⊗ |vac⟩2 and,
e.g., â†1 |vac⟩ = â†1 ⊗ Î |vac⟩1 ⊗ |vac⟩2, but we drop this
extra baggage for brevity.]

All single-qubit operations can be implemented with
two-mode passive operations consisting of (unitary) beam
splitters and phase-shifters, ÛBS and Ûϕ, described by
Hamiltonians

ĤBS = iθeiφâ†1â2 + h.c., (38)

Ĥϕ =

2∑
k=1

ϕkâ
†
kâk. (39)

These operations are called passive because they preserve
the total photon number N̂ ≡

∑
k â

†
kâk.

Exercise 9 (Passive Operations) Show that any
Hamiltonian of the form Ĥ =

∑
j,k Hjkâ

†
j âk commutes

with the total photon number operator N̂ .

The action of a general beamsplitter is

â′1 = cos θ â1 + eiφ sin θ â2, (40)

â′2 = cos θ â2 − e−iφ sin θ â1. (41)

Writing a vector of operators â = (â1, â2), we can com-
pactly write the transformation as

â′ =

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
︸ ︷︷ ︸

≡VBS

â (42)

where we have defined the 2 × 2 matrix VBS. Note that
V †
BSVBS = Î and detVBS = 1. Hence VBS is a special

unitary matrix, and, starting from the logical basis, one
can implement any single-qubit rotation (up to a global
phase) via VBS. Indeed, one can show that

|0⟩ VBS−→ cos θ |0⟩+ e−iφ sin θ |1⟩ , (43)

|1⟩ VBS−→ −eiφ sin θ |0⟩+ cos θ |1⟩ . (44)

Exercise 10 (Pauli-X and -Y) For what values of θ
and φ can we implement Pauli-X and Pauli-Y matrices
(up to a global phase), X =

(
0 1
1 0

)
and Y =

(
0 −i
i 0

)
?

For the phase shifts generated by the Hamiltonian in
Eq. (39), we have

Vϕ =

(
eiϕ1 0
0 eiϕ2

)
. (45)

Thus by choosing ϕ1 = 0 and ϕ2 = π, we have the Pauli-Z
matrix Z =

(
1 0
0 −1

)
.

Exercise 11 (Hadamard) What combination of
phase-shifters and beamsplitters produces the Hadamard
matrix, H = 1√

2

(
1 1
1 −1

)
?

B. Spatial, polarization, and time-bin encodings

The dof that we choose for encoding often depends
on the context or application. Some key questions to
consider when choosing a dof for encoding are:

• Is the dof easy to manipulate such that, e.g., arbi-
trary single-qubit operations are possible?

• Which dofs are more robust to practical noise
sources?

• Can we scale up for large-scale quantum informa-
tion processing with multiple qubits?

Answers to these questions vary with the context. Typ-
ical encodings used for quantum information processing
tasks are (i) spatial, (ii) polarization, and (iii) time-bin.

(i) Spatial : Photon with fixed frequency ω, polariza-
tion etc., but may traverse two distinct paths la-
belled k = 1, 2. Interaction induced by overlapping
the paths at, e.g., beamsplitters. Phase shifts in-
duced by changing path lengths s.t. ϕk = ωLk/c.

(ii) Polarization: Photon with fiexed frequency, spatial
path etc., but may be in a superposition of polariza-
tion states. Horizontal H and vertical V polariza-
tion define logical states, |0⟩ = |H⟩ and |1⟩ = |V ⟩.
Diagonal, circular polarizations given by superpo-
sitions of H and V . Birefringent materials used to
implement single-photon operations.

(iii) Time-bin: Photon with fixed frequency, polariza-
tion, spatial path etc., but may occupy two distinct
time-binned intervals k = e, l (e for early, l for late).
Fast optical switches and delays implement single-
photon operations.

We can also swap between encodings. For instance,
given two polarization modes H,V and two spatial modes
1, 2, we can implement a polarizing beamsplitter (PBS)
such that

âH,1 → âH,1 and âH,2 → âH,2, (46)
âV,1 → âV,2 and âV,2 → âV,1. (47)

In other words, the horizontal polarization gets transmit-
ted through the beamsplitter while the vertical polariza-
tion gets reflected. Following the PBS, we can rotate,
e.g., a V into an H, thus swapping a polarization qubit
for a spatial qubit. A similar swap can be done between
time-bin and polarization with fast optical switching [4].
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IV. SINGLE-PHOTON EVOLUTION

Quantum information is often encoded into the degrees
of freedom of a single photon, as discussed in the previous
section. Moreover, most (quantum) communication links
are over, e.g., noisy fibers or free-space links, which can
be accurately described by thermal loss channels. Thus
in this section, we will focus on the action of a thermal
loss channel Lη,NB

on a single-photon state ρ1. In phys-
ical scenarios, the background quanta NB is equal to the
population of the environment (originating from, e.g., the
sun, the moon, or background lights for free-space links),
whereas the loss probability 1−η of the channel is equal to
the absorption probability of the medium. For instance,
given a fiber of length L, η = e−αL where α is an attenu-
ation coefficient (typically quoted in dB/km). The expo-
nential attenuation is a consequence of the Beer-Lambert
law for absorptive media.

Consider a thermal-loss channel Lη,NB
from Eq. (23).

It admits the following decomposition

Lη,NB
= AG,0 ◦ Lτ,0, (48)

with

τG = η, (49)
G− 1

1−Gτ
= NB . (50)

The parameters τ and G are related to η and NB via

G = (1− η)NB + 1, (51)

τ =
η

(1− η)NB + 1
. (52)

From above, a thermal loss channel can be decomposed
into a pure loss channel and a quantum-limited amplifier.
Thus the Kraus operators can be obtained as [7, 8]

Lη,NB
(ρ) =

∞∑
ℓ=0

∞∑
k=0

B̂kÂℓρÂ
†
ℓB̂

†
k, (53)

where

Âℓ =

√
(1− τ)ℓ

ℓ!
τ â

†â/2âℓ (54)

B̂k =

√
1

k!

1

G

(
G− 1

G

)k

â†kG−â†â/2. (55)

Note that â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩.

Let’s focus on a single photon input ρ1 = |1⟩⟨1|. Terms
Âℓρ1Â

†
ℓare only non-zero when ℓ = 0, 1—i.e.,

Â0 |1⟩⟨1| Â†
0 = τ |1⟩⟨1| . (56)

and

Â1 |1⟩⟨1| Â†
1 = (1− τ) |0⟩⟨0| . (57)

This is very intuitive. With probability τ , the photon is
transmitted. With probability 1− τ , the photon is lost.

Things get more complicated for the amplifier. We
focus on the k = 0, 1 terms, with operators given as

B̂0 =

√
1

G
G−â†â/2 (58)

B̂1 =

√
1

G

(
G− 1

G

)
â†G−â†â/2. (59)

Composing these with the pure-loss channel from above,

B̂0Â0 |1⟩⟨1| Â†
0B̂0 =

τ

G2
|1⟩⟨1| , (60)

in which case the photon is unaffected by the channel.
For the next term,

B̂1Â0 |1⟩⟨1| Â†
0B̂1 =

2(G− 1)

G3
τ |2⟩⟨2| , (61)

in which case one noisy photon is added to the state.
Going further,

B̂0Â1 |1⟩⟨1| Â†
1B̂0 =

(1− τ)

G
|0⟩⟨0| , (62)

in which case the original photon is simply lost and we
are left with vacuum. Finally,

B̂1Â1 |1⟩⟨1| Â†
1B̂1 =

G− 1

G2
(1− τ)Θ1, (63)

where Θ1 is a completely mixed (i.e., thermal) single-
photon from the channel. [For a single photon with two
degrees of freedom, Θ1 = Î/2, where Î is the identity on
the single-photon Hilbert space.] In this case, the initial
photon is lost and then replaced with a noisy photon.

The overall channel, when acting on an arbitrary
single-photon state ρ1, can then be written as

Lη,NB
(ρ1) =

τ

G2
ρ1 +

G− 1

G2
(1− τ)Θ1

+
(1− τ)

G
|vac⟩⟨vac|

+
(G− 1)2 + 2τ(G− 1)

G2
ρ≥2 photons, (64)

where ρ≥2 photons is a quantum state with more than
two photons.

Exercise 12 (Pure loss and erasure) Show that the
pure loss channel Lη,0, when acting on any single-photon
state ρ1, is equivalent to an erasure channel (see Exer-
cise 1). Determine the erasure probability and the erasure
state. [Hint: One can find a quick solution via equations
above.]

The probability of successfully transmitting the photon
ρ1 through the channel Lη,NB

, is [using Eqs. (51) and
(52)]

psuccess =
τ

G2
=

η

[(1− η)NB + 1]
3 . (65)
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The probability of getting a random single photon (i.e.,
depolarized single photon) is

pdepolarizing =
G− 1

G2
(1− τ) =

(1− η)2NB(NB + 1)

[(1− η)NB + 1]
3 .

(66)
The probability of getting nothing (i.e., the vacuum) is

pvac =
(1− τ)

G
=

(1− η)(NB + 1)

[(1− η)NB + 1]2
. (67)

Finally, the probability of getting two or more photons is

p≥2 = 1− psuccess − pdepolarizing − pvac. (68)

Exercise 13 (Low thermal noise) Expand the output
probabilities psuccess, pvac, and pdepolarizing to first order
in NB and write out the resulting expressions. Show ex-
plicitly that p≥2 = 2η(1 − η)NB + O

(
N2

B

)
. Can you

intuitively explain the result for p≥2?

Appendix A: Tidbits on the quantum harmonic
oscillator

Consider the (normalized) position and momentum op-
erators q̂ and p̂ which obey the canonical commutation
relations

[q̂, p̂] = iÎ. (A1)

The annihilation and creation operators, â and â†, are
related to the canonical operators via

â =
1

2
(q̂ + ip̂) , (A2)

which obey
[
â, â†

]
= Î. Likewise, Re{â} = q̂ and

Im{â} = p̂. We consider a Harmonic oscillator of fre-
quency ω with Hamiltonian,

Ĥ =
ℏω
2

(
q̂2 + p̂2

)
(A3)

= ℏωâ†â+ ℏω/2 (A4)
= ℏωn̂+ ℏω/2, (A5)

where the additive constant ℏω/2 is the ‘zero-point en-
ergy’. We ignore it for the most part. The operator
n̂ ≡ â†â is the number operator and tells us how many
quanta occupy an oscillator state.

One can show that the following ‘Fock states’ are eigen-
states of the number operator (and thus the oscillator
Hamiltonian),

|n⟩ =
(
â†
)n

√
n!

|vac⟩ , (A6)

where n is a positive integer and |vac⟩ ≡ |n = 0⟩ is the
vacuum (i.e., lowest energy) state defined implicitly via
â |vac⟩ = 0. From the vacuum condition and the com-
mutator for annihilation and creation operators, we have
that

n̂ |n⟩ = n |n⟩ . (A7)

The set {|n⟩}∞n=0 form a basis in the bosonic Hilbert space
of a single mode (of mode frequency ω) H , i.e.

⟨m|n⟩ = δmn (A8)

and
∞∑

n=0

|n⟩⟨n| = Î , (A9)

where δmn is the Kronecker delta and Î is the identity on
H . One can show that

â |n⟩ =
√
n |n− 1⟩ , (A10)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , (A11)

i.e. â annihilates one quanta and â† creates one quanta.
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